Skip to main content
Log in

Synthesis and crystal structures of four three-dimensional hybrid materials based on polyoxovanadate bridging macrocyclic copper/nickel complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In this research, four hybrid materials, namely [Ni(MC)]3[VO3]6·12.25H2O (1), [Cu(MC)]3[VO3]6 (2), [Ni(PC)]3[VO3]6·2H2O (3), and [Cu(PC)]3[VO3]6·2H2O (4) (MC = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane, PC = 1,8-dipropyl

-1,3,6,8,10,13-hexaazacyclotetradecane), were obtained by reacting transition metal macrocyclic complexes with NH4VO3. Subsequently, they were characterized by physico-chemical and spectroscopic methods, and X-ray powder diffraction. Single-crystal structure analysis revealed that the Ni(II)/Cu(II) atoms were coordinated by two oxygen atoms from [VO4] tetrahedra and four nitrogen atoms from ligands, thereby forming a six-coordinate octahedral coordination geometry. Six [VO4] tetrahedra form a hexanuclear [V6O18]6− ring by sharing six μ2-oxygen atoms in complexes 1–4. All complexes exhibited similar three-dimensional structures formed by connections of hexanuclear [V6O18]6− rings with their corresponding cationic moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Crystallographic data for 14 have been deposited with the Cambridge Crystallographic Data Center as supplemental publication numbers CCDC 2,069,039–2,069,042, respectively. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk.

References

  1. Zhang MB, Zhang J, Zheng ST, Yang GY (2005) Angew Chem Int Ed 44:1385

    Article  CAS  Google Scholar 

  2. Tripathi A, Hughbanks T, Clearfield A (2003) J Am Chem Soc 125:10528

    Article  CAS  Google Scholar 

  3. Zhang Z, Wang YL, Li HL, Sun KN, Yang GY (2019) CrystEngComm 21:2641

    Article  CAS  Google Scholar 

  4. Liu JX, Zhang XB, Li YL, Huang SL, Yang GY (2020) Coordin Chem Rev 414:213260

    Article  CAS  Google Scholar 

  5. Wang XL, Zhang JY, Chang ZH, Zhang Z, Wang X, Lin HY, Cui ZW (2021) Inorg Chem 60:3331

    Article  CAS  Google Scholar 

  6. Li JK, Hu CW (2015) Chinese J Inorg Chem 31:1705

    CAS  Google Scholar 

  7. Wan HX, Wang CL, Zhang Y, Miao H, Zhou S, Zhou Y (2014) Inorg Chem 53:10498

    Article  CAS  Google Scholar 

  8. Shen JQ, Wu Q, Zhang Y, Zhang ZM, Li YG, Lu Y, Wang EB (2014) Chem Eur J 20:2840

    Article  CAS  Google Scholar 

  9. Wang XL, Gong CH, Zhang JW, Hou LL, Luan J, Liu GC (2014) CrystEngComm 16:7745

    Article  CAS  Google Scholar 

  10. He XL, Liu YP, Gong KN, Han ZG, Zhai XL (2015) Inorg Chem 54:1215

    Article  CAS  Google Scholar 

  11. Zhang Y, Shen JQ, Zheng LH, Zhang ZM, Li YX, Wang EB (2014) Cryst Growth Des 14:110

    Article  CAS  Google Scholar 

  12. Monakhov KY, Linnenberg O, Kozłowski P, van Leusen J, Besson C, Secker T, Ellern A, López X, Poblet JM, Kögerler P (2015) Chem Eur J 21:2387

    Article  CAS  Google Scholar 

  13. Li X, Yang L, Qin C, Liu FH, Zhao L, Shao KZ, Su ZM (2015) RSC Adv 5:59093

    Article  CAS  Google Scholar 

  14. Buru CT, Li P, Mehdi BL, Dohnalkoya A, Platero-Prats AE, Browning ND, Chapman KW, Hupp JT, Farha OK (2017) Mater Chem 29:5174

    Article  CAS  Google Scholar 

  15. Buru CT, Platero-Prats AE, Chica DG, Kanatzidis MG, Chapman KW, Farha OK (2018) J Mater Chem A 6:7389

    Article  CAS  Google Scholar 

  16. Cai LX, Li SC, Yan DN, Zhou LP, Guo F, Sun QF (2018) J Am Chem Soc 140:4869

    Article  CAS  Google Scholar 

  17. Chen L, Chen WL, Wang XL, Li YG, Su ZM, Wang EB (2019) Chem Soc Rev 48:260

    Article  CAS  Google Scholar 

  18. Mahnke LK, Stehlikova G, Synnatschke K, Backes C, Nather C, Bensch W (2021) ChemNanoMat 7:78

    Article  CAS  Google Scholar 

  19. Kuang JQ, Zhuang JQ, Zhou J, Wang XL, Ou GC (2019) Transition Met Chem 44:263

    Article  CAS  Google Scholar 

  20. Xie JH, Tan YZ, Li ZH, Zhou Q, Ou GC (2021). Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2020.1813171

    Article  Google Scholar 

  21. Ou GC, Yuan XY, Li ZZ (2012) Transition Met Chem 37:705

    Article  CAS  Google Scholar 

  22. Ou GC, Huang ZW, Pan ZY, Zhou DL, Li ZZ, Yuan XY (2014) Chin J Inorg Chem 30:419

    CAS  Google Scholar 

  23. Ou GC, Liao Y, Xiang YF, Yuan XY, Li ZZ (2017) Chin J Struct Chem 36:135

    CAS  Google Scholar 

  24. Ou GC, Yuan XY, Li ZZ, Li WY, Zeng F, Deng JH, Zhong DC (2016) Eur J Inorg Chem 21:3500

    Article  Google Scholar 

  25. Suh MP, Kang SG (1988) Inorg Chem 27:2544

    Article  CAS  Google Scholar 

  26. Sheldrick GM (1996) SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Göttingen

    Google Scholar 

  27. Sheldrick GM (2008) Acta Cryst A64:112

    Article  Google Scholar 

  28. Spek AL (2003) J Appl Crystallogr 36:7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51772091), the Scientific Research Fund of Hunan Provincial Education Department (20A210), and the Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Chuan Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, GC., Wang, Q., Tan, YZ. et al. Synthesis and crystal structures of four three-dimensional hybrid materials based on polyoxovanadate bridging macrocyclic copper/nickel complexes. Transit Met Chem 46, 471–480 (2021). https://doi.org/10.1007/s11243-021-00464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00464-6

Navigation