Skip to main content
Log in

Consideration on Efficient Recombinant Protein Production: Focus on Substrate Protein-Specific Compatibility Patterns of Molecular Chaperones

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Expression of recombinant proteins requires at times the aid of molecular chaperones for efficient post-translational folding into functional structure. However, predicting the compatibility of a protein substrate with the right type of chaperone to produce functional proteins is a daunting issue. To study the difference in effects of chaperones on His-tagged recombinant proteins with different characteristics, we performed in vitro proteins expression using Escherichia coli overexpressed with several chaperone ‘teams’: Trigger Factor (TF), GroEL/GroES and DnaK/DnaJ/GrpE, alone or in combinations, with the aim to determine whether protein secondary structure can serve as predictor for chaperone success. Protein A, which has a helix dominant structure, showed the most efficient folding with GroES/EL or TF chaperones alone, whereas Protein B, which has less helix in the structure, showed a remarkable effect on the DnaK/J/GrpE system alone. This tendency was also seen with other recombinant proteins with particular properties. With the chaperons’ assistance, both proteins were synthesized more efficiently in the culture at 22.5 °C for 20 h than at 37 °C for 3 h. These findings suggest a novel avenue to study compatibility of chaperones with substrate proteins and optimal culture conditions for producing functional proteins with a potential for predictive analysis of the success of chaperones based on the properties of the substrate protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [AVF], upon reasonable request.

References

  1. Francis DM, Page R (2010) Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 5(1):1–29. https://doi.org/10.1002/0471140864.ps0524s61

    Article  Google Scholar 

  2. Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K (1993) Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74:909–917. https://doi.org/10.1016/0092-8674(93)90470-B

    Article  CAS  PubMed  Google Scholar 

  3. Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9:102–110. https://doi.org/10.1016/S0959-440X(99)80013-X

    Article  CAS  PubMed  Google Scholar 

  4. Bukau B, Deuerling E, Pfund C, Craig EA (2000) Getting newly synthesized proteins into shape. Cell 101:119–122. https://doi.org/10.1016/S0092-8674(00)80806-5

    Article  CAS  PubMed  Google Scholar 

  5. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858. https://doi.org/10.1126/science.1068408

    Article  CAS  PubMed  Google Scholar 

  6. Nishimura K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889. https://doi.org/10.1128/aem.66.3.884-889.2000

    Article  Google Scholar 

  7. Hesterkamp T, Bukau B (1996) Identification of the prolyl isomerase domain of Escherichia coli trigger factor. FEBS Lett 385:67–71. https://doi.org/10.1016/0014-5793(96)00351-1

    Article  CAS  PubMed  Google Scholar 

  8. Stoller G, Tradler T, Rucknagel KP, Rahfeld J-U, Fischer G (1996) An 11.8 kDa proteolytic fragment of the E. coli trigger factor represents the domain carrying the peptidyl-prolyl cis/trans isomerase activity. FEBS Lett 384:117–122. https://doi.org/10.1016/0014-5793(96)00282-7

    Article  CAS  PubMed  Google Scholar 

  9. Hesterkamp T, Deuerling E, Bukau B (1997) The amino-terminal 118 amino acids of Escherichia coli trigger factor constitute a domain that is necessary and sufficient for binding to ribosomes. J Biol Chem 272:21865–21871. https://doi.org/10.1074/jbc.272.35.21865

    Article  CAS  PubMed  Google Scholar 

  10. Valent QA, de Gier JW, von Heijne G, Kendall DA, ten Hagen-Jongman CM, Oudega B, Luirink J (1997) Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol Microbiol 25:53–64. https://doi.org/10.1046/j.1365-2958.1997.4431808.x

    Article  CAS  PubMed  Google Scholar 

  11. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366. https://doi.org/10.1016/S0092-8674(00)80928-9

    Article  CAS  PubMed  Google Scholar 

  12. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696. https://doi.org/10.1038/23301

    Article  CAS  PubMed  Google Scholar 

  13. Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90:491–500. https://doi.org/10.1016/S0092-8674(00)80509-7

    Article  CAS  PubMed  Google Scholar 

  14. Ariosa A, Lee JH, Wang S, Saraogi I, Shan S-O (2015) Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Proc Natl Acad Sci USA 112:E3169-3178. https://doi.org/10.1073/pnas.1422594112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akopian D, Shen K, Zhang X, Shan SO (2013) Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem 82:693–721. https://doi.org/10.1146/annurev-biochem-072711-164732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699. https://doi.org/10.1128/AEM.64.5.1694-1699.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/S0022-2836(83)80284-8

    Article  CAS  PubMed  Google Scholar 

  18. Niwa T, Kanamori T, Ueda T, Taguchi H (2012) Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc Natl Acad Sci USA 109:8937–8942. https://doi.org/10.1073/pnas.1201380109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Castanié-Cornet MP, Bruel N, Genevaux P (2014) Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta 1843:1442–1456. https://doi.org/10.1016/j.bbamcr.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  20. Cayley S, Lewis BA, Guttman HJ, Record MT Jr (1991) Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol 222:281–300. https://doi.org/10.1016/0022-2836(91)90212-O

    Article  CAS  PubMed  Google Scholar 

  21. Zimmerman SB, Trach SB (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620. https://doi.org/10.1016/0022-2836(91)90499-V

    Article  CAS  PubMed  Google Scholar 

  22. Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194. https://doi.org/10.1016/j.cell.2013.11.028

    Article  CAS  PubMed  Google Scholar 

  23. Song JM, An YJ, Kang MH, Lee Y-H, Cha S-S (2012) Cultivation at 6–10°C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli. Prot Expr Purif 82:297–301. https://doi.org/10.1016/j.pep.2012.01.020

    Article  CAS  Google Scholar 

  24. Shaw MK, Marr AG, Ingraham JL (1971) Determination of the minimal temperature for growth of Escherichia coli. J Bacteriol 105:683–684. https://doi.org/10.1128/JB.105.2.683-684.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joseph RE, Andreotti AH (2008) Bacterial expression and purification of Interleukin2 Tyrosine kinase: single step separation of the chaperonin impurity. Prot Expr Purif 60:194–197. https://doi.org/10.1016/j.pep.2008.04.001

    Article  CAS  Google Scholar 

  26. Annamalai T, Dani N, Cheng B, Tse-Dinh YC (2009) Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol. BMC Biochem 10:18–26. https://doi.org/10.1186/1471-2091-10-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Helaly A, Jiang T, Bell DR (2008) Expression of the C. elegans aryl hydrocarbon receptor ligand-binding domain. Toxicology 253:25. https://doi.org/10.1016/j.tox.2008.07.033

    Article  CAS  Google Scholar 

  28. Hristozova N, Tompa P, Kovacs D (2016) A novel method for assessing the chaperone activity of proteins. PLoS ONE. https://doi.org/10.1371/journal.pone.0161970

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The support for this study came from NIEHS grants R21 ES025379 and R21 ES023936. Dr. Fedulov is also supported in part by NIEHS grant R01 ES030227 and by Rhode Island Hospital Department of Surgery funds.

Author information

Authors and Affiliations

Authors

Contributions

NY planed and conducted all the experiments. TE performed western blotting under supervision of and with help from NY. DJG designed and constructed expression vectors of Protein A and Protein B. AVF provided funding support and supervision of the entire work. NY wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Alexey V. Fedulov.

Ethics declarations

Conflict of interest

The authors declare no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yano, N., Emi, T., Gregory, D.J. et al. Consideration on Efficient Recombinant Protein Production: Focus on Substrate Protein-Specific Compatibility Patterns of Molecular Chaperones. Protein J 40, 756–764 (2021). https://doi.org/10.1007/s10930-021-09995-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09995-4

Keywords

Navigation