Skip to main content
Log in

Protein Structure Prediction: Conventional and Deep Learning Perspectives

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Protein structure prediction is a way to bridge the sequence-structure gap, one of the main challenges in computational biology and chemistry. Predicting any protein's accurate structure is of paramount importance for the scientific community, as these structures govern their function. Moreover, this is one of the complicated optimization problems that computational biologists have ever faced. Experimental protein structure determination methods include X-ray crystallography, Nuclear Magnetic Resonance Spectroscopy and Electron Microscopy. All of these are tedious and time-consuming procedures that require expertise. To make the process less cumbersome, scientists use predictive tools as part of computational methods, using data consolidated in the protein repositories. In recent years, machine learning approaches have raised the interest of the structure prediction community. Most of the machine learning approaches for protein structure prediction are centred on co-evolution based methods. The accuracy of these approaches depends on the number of homologous protein sequences available in the databases. The prediction problem becomes challenging for many proteins, especially those without enough sequence homologs. Deep learning methods allow for the extraction of intricate features from protein sequence data without making any intuitions. Accurately predicted protein structures are employed for drug discovery, antibody designs, understanding protein–protein interactions, and interactions with other molecules. This article provides a review of conventional and deep learning approaches in protein structure prediction. We conclude this review by outlining a few publicly available datasets and deep learning architectures currently employed for protein structure prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Anfinsen CB (1973) Science 181(4096):223

    CAS  PubMed  Google Scholar 

  2. Martìnez L (2014) J Chem Educ 91(11):1918. https://doi.org/10.1021/ed300302h.

    Article  Google Scholar 

  3. Levinthal C (1969) Mossbauer spectroscopy in biological systems 67:22

    Google Scholar 

  4. Hooft RW, Sander C, Vriend G (1997) Bioinformatics 13(4):425

    CAS  Google Scholar 

  5. Hollingsworth SA, Karplus PA (2010) Biomol Concepts 1(3–4):271

    CAS  PubMed  PubMed Central  Google Scholar 

  6. https://www.uniprot.org/statistics/TrEMBL/, Accessed: 2021–02–03

  7. https://www.ebi.ac.uk/uniprot/TrEMBLstats/, Accessed: 2021–02–03

  8. https://www.rcsb.org/stats/summary/, Accessed: 2021–03–31

  9. https://predictioncenter.org/, Accessed : 2020–12–12

  10. Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J (2019) Proteins: Structure. Function, and Bioinformatics 87(12):1011

    CAS  Google Scholar 

  11. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žìdek A, Nelson AW, Bridgland A et al (2020) Nature 577(7792):706

    CAS  PubMed  Google Scholar 

  12. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žìdek A, Nelson AW, Bridgland A et al (2019) Proteins: Structure. Function, and Bioinformatics 87(12):1141

    CAS  Google Scholar 

  13. R.E.e. John Jumper, in In Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (Abstract Book), 30 November - 4 December 2020 (2020)

  14. AlQuraishi M (2019) Cell Syst 8(4):292

    CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Ingraham, A.J. Riesselman, C. Sander, D.S. Marks, in ICLR (2019)

  16. Anfinsen CB (1971) Les Prix Nobel en 1972:103–119

    Google Scholar 

  17. Wei GW (2019) Nature Machine Intelligence 1(8):336

    Google Scholar 

  18. A. Fiser, in Computational biology (Springer, 2010), pp. 73–94

  19. Lam SD, Das S, Sillitoe I, Orengo C (2017) Acta Crystallographica Section D: Structural Biology 73(8):628

    CAS  PubMed Central  Google Scholar 

  20. Higgins DG, Bleasby AJ, Fuchs R (1992) Bioinformatics 8(2):189

    CAS  Google Scholar 

  21. Sievers F, Higgins DG (2014) Curr Protoc Bioinformatics 48(1):3

    PubMed  Google Scholar 

  22. Edgar RC (2004) Nucleic Acids Res 32(5):1792

    CAS  PubMed  PubMed Central  Google Scholar 

  23. T. Madden, in The NCBI Handbook [Internet]. 2nd edition (National Center for Biotechnology Information (US), 2013)

  24. Jones DT, Swindells MB (2002) Trends Biochem Sci 27(3):161

    CAS  PubMed  Google Scholar 

  25. Wu S, Zhang Y (2007) Nucleic Acids Res 35(10):3375

    CAS  PubMed  PubMed Central  Google Scholar 

  26. R.D. Finn, J. Clements, S.R. Eddy, Nucleic acids research 39(suppl_2), W29 (2011)

  27. Xu J, Li M, Kim D, Xu Y (2003) J Bioinform Comput Biol 1(01):95

    CAS  PubMed  Google Scholar 

  28. Pearson WR (2016) Curr Protoc Bioinformatics 53(1):3

    PubMed  PubMed Central  Google Scholar 

  29. Pei J, Kim BH, Grishin NV (2008) Nucleic Acids Res 36(7):2295

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sutcliffe MJ, Haneef I, Carney D, Blundell T (1987) Protein Engineering. Design and Selection 1(5):377

    CAS  Google Scholar 

  31. Bates PA, Kelley LA, MacCallum RM, Sternberg MJ (2001) Proteins: Structure. Function, and Bioinformatics 45(S5):39

    Google Scholar 

  32. Guex N, Peitsch MC (1997) Electrophoresis 18(15):2714

    CAS  PubMed  Google Scholar 

  33. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen MY, Pieper U, Sali A (2006) Current protocols in bioinformatics 15(1):5

    Google Scholar 

  34. Lee MR, Tsai J, Baker D, Kollman PA (2001) J Mol Biol 313(2):417

    CAS  PubMed  Google Scholar 

  35. Carnevali P, Tóth G, Toubassi G, Meshkat SN (2003) Journal of the American Chemical Society 125(47):14244

    CAS  PubMed  Google Scholar 

  36. Herrmann F, Suhai S (1994) Computational Methods in Genome Research. Springer, Boston, pp 173–190

    Google Scholar 

  37. Nilges M, Clore GM, Gronenborn AM (1988) FEBS Lett 239(1):129

    CAS  PubMed  Google Scholar 

  38. Dunbrack RL Jr, Cohen FE (1997) Protein Sci 6(8):1661

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dunbrack RL Jr (2002) Curr Opin Struct Biol 12(4):431

    CAS  PubMed  Google Scholar 

  40. Xu G, Ma T, Du J, Wang Q, Ma J (2019) J Chem Theory Comput 15(9):5154

    CAS  PubMed  Google Scholar 

  41. Wang Q, Canutescu AA, Dunbrack RL Jr (2008) Nat Protoc 3(12):1832

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang X, Pearce R, Zhang Y (2020) Bioinformatics 36(12):3758

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu D, Zhang Y (2011) Biophys J 101(10):2525

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhattacharya D, Nowotny J, Cao R, Cheng J (2016) Nucleic Acids Res 44(W1):W406

    CAS  PubMed  PubMed Central  Google Scholar 

  45. D. Bhattacharya, J. Cheng, 2013 in Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, pp. 106–114

  46. Remmert M, Biegert A, Hauser A, Söding J (2012) Nat Methods 9(2):173

    CAS  Google Scholar 

  47. Söding J, Biegert A, Lupas AN (2005) Nucleic Acids Res 33(suppl2):W244

    PubMed  PubMed Central  Google Scholar 

  48. Eddy SR (1998) Bioinformatics (Oxford, England) 14(9):755

    CAS  Google Scholar 

  49. Berman H, Henrick K, Nakamura H, Markley JL (2007) Nucleic acids research 35(1):D301

    CAS  PubMed  Google Scholar 

  50. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) J Mol Biol 247(4):536

    CAS  PubMed  Google Scholar 

  51. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL et al (2004) Nucleic acids research 32(1):D138

    CAS  PubMed  PubMed Central  Google Scholar 

  52. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A et al (2019) Nucleic Acids Res 47(D1):D427

    CAS  PubMed  Google Scholar 

  53. Ponting CP, Schultz J, Milpetz F, Bork P (1999) Nucleic Acids Res 27(1):229

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN et al (2003) BMC Bioinformatics 4(1):1

    Google Scholar 

  55. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) Nucleic Acids Res 30(1):281

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) Nat Protoc 10(6):845

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Blunsom P (2004) Reinforced Plastics 48:18–19

    Google Scholar 

  58. Altschul SF, Madden TL, Scahffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic acids research 25(17):3389

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Song Y, DiMaio F, Wang RYR, Kim D, Miles C, Brunette T, Thompson J, Baker D (2013) Structure 21(10):1735

    CAS  PubMed  Google Scholar 

  60. Chen J, Long R, Wang X, Liu B, Chou KC (2016) Scientific Reports 6:32333

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Nat Protoc 7(8):1511

    PubMed  PubMed Central  Google Scholar 

  62. Conway P, Tyka MD, DiMaio F, Konerding DE, Baker D (2014) Protein Sci 23(1):47

    CAS  PubMed  Google Scholar 

  63. Jayaram B, Dhingra P, Mishra A, Kaushik R, Mukherjee G, Singh A, Shekhar S (2014) BMC Bioinformatics 15(16):S7

    PubMed  PubMed Central  Google Scholar 

  64. Kohler JJ, Metallo SJ, Schneider TL, Schepartz A (1999) Proc Natl Acad Sci 96(21):11735

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) Nat Methods 12(1):7

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nikolaev DM, Shtyrov AA, Panov MS, Jamal A, Chakchir OB, Ko-chemirovsky VA, Olivucci M, Ryazantsev MN (2018) ACS Omega 3(7):7555

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ebejer JP, Hill JR, Kelm S, Shi J, Deane CM (2013) Nucleic Acids Res 41(W1):W379

    PubMed  PubMed Central  Google Scholar 

  68. Kelm S, Shi J, Deane CM (2010) Bioinformatics 26(22):2833

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Almeida JG, Preto AJ, Koukos PI, Bonvin AM, Moreira IS (2017) Biochimica et Biophysica Acta (BBA)-Biomembranes 1859(10):2021

    CAS  Google Scholar 

  70. Lemer CMR, Rooman MJ, Wodak SJ (1995) Proteins: Structure. Function, and Bioinformatics 23(3):337

    CAS  Google Scholar 

  71. Rost B, Schneider R, Sander C (1997) J Mol Biol 270(3):471

    CAS  PubMed  Google Scholar 

  72. Söding J, Remmert M (2011) Curr Opin Struct Biol 21(3):404

    PubMed  Google Scholar 

  73. Buchan DW, Jones DT (2017) Bioinformatics 33(17):2684

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lobley A, Sadowski MI, Jones DT (2009) Bioinformatics 25(14):1761

    CAS  PubMed  Google Scholar 

  75. Ghouzam Y, Postic G, de Brevern AG, Gelly JC (2015) Bioinformatics 31(23):3782

    CAS  PubMed  Google Scholar 

  76. Kozma D, Tusnády GE (2015) BMC Bioinformatics 16(1):1

    Google Scholar 

  77. Leman JK, Lyskov S, Bonneau R (2017) BMC Bioinformatics 18(1):1

    Google Scholar 

  78. S. Dhingra, R. Sowdhamini, F. Cadet, B. Offmann, Biochimie (2020)

  79. Abbass J, Nebel JC, Mansour N (2013) Biol Knowl Discov Handb. John Wiley & Sons, Inc, Hoboken, New Jersey, pp 703–24

    Google Scholar 

  80. Lee J, Freddolino PL, Zhang Y (2017) From protein structure to function with bioinformatics. Springer, Dordrecht, pp 3–35

    Google Scholar 

  81. Hagler A, Huler E, Lifson S (1974) J Am Chem Soc 96(17):5319

    CAS  PubMed  Google Scholar 

  82. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) J Am Chem Soc 106(3):765

    CAS  Google Scholar 

  83. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SA, Karplus M (1983) Journal of computational chemistry 4(2):187

    CAS  Google Scholar 

  84. Skolnick J (2006) Curr Opin Struct Biol 16(2):166

    CAS  PubMed  Google Scholar 

  85. Subramani A, Wei Y, Floudas CA (2012) AIChE J 58(5):1619

    CAS  PubMed  Google Scholar 

  86. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W et al (2008) Amber 10. University of California, Tech. rep.

    Google Scholar 

  87. Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110(6):1657

    CAS  PubMed  Google Scholar 

  88. Czaplewski C, Karczyńska A, Sieradzan AK, Liwo A (2018) Nucleic Acids Res 46(W1):W304

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Schuler LD, Daura X, Van Gunsteren WF (2001) J Comput Chem 22(11):1205

    CAS  Google Scholar 

  90. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) J Comput Chem 30(10):1545

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dickson CJ, Madej BD, Skjevik ÅA, Betz RM, Teigen K, Gould IR, Walker RC (2014) J Chem Theory Comput 10(2):865

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Abbass J, Nebel JC (2020) BMC Bioinformatics 21:1

    Google Scholar 

  93. Xu D, Zhang Y (2013) Proteins: Structure. Function, and Bioinformatics 81(2):229

    CAS  Google Scholar 

  94. Trevizani R, Custóodio FL, Dos Santos KB, Dardenne LE (2017) PloS one 12(1):e0170131

    PubMed  PubMed Central  Google Scholar 

  95. K.B. Santos, R. Trevizani, F.L. Cust ́odio, L.E. Dardenne, in Proceedings of the International Conference on Bioinformatics & Computational Biology (BIOCOMP) (The Steering Committee of The World Congress in Computer Science, Computer, 2015), p. 38

  96. de Oliveira SH, Shi J, Deane CM (2015) PloS one 10(4):e0123998

    PubMed  PubMed Central  Google Scholar 

  97. Abbass J, Nebel JC (2015) BMC Bioinformatics 16(1):136

    PubMed  PubMed Central  Google Scholar 

  98. Baeten L, Reumers J, Tur V, Stricher F, Lenaerts T, Serrano L, Rousseau F, Schymkowitz J (2008) PLoS Comput Biol 4(5):e1000083

    PubMed  PubMed Central  Google Scholar 

  99. Shah JK, Maginn EJ (2011) The Journal of chemical physics 135(13):134121

    PubMed  Google Scholar 

  100. Jorgensen WL, Tirado-Rives J (1996) J Phys Chem 100(34):14508

    CAS  Google Scholar 

  101. Chen J (2018) IOP Conference Series: Earth and Environmental Science, vol 128. IOP Publishing, Bristol, p 012110

    Google Scholar 

  102. Sillitoe I, Dawson N, Thornton J, Orengo C (2015) Biochimie 119:209

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kabsch W, Sander C (1983) Biopolymers: Original Research on Biomolecules 22(12):2577

    CAS  Google Scholar 

  104. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman KW, Renfrew PD, Smith CA, Sheffler W et al (2011) Methods in enzymology, vol 487. Elsevier, Amsterdam, pp 545–574

    Google Scholar 

  105. de Oliveira SH, Deane CM (2018) Bioinformatics 34(13):2219

    PubMed  Google Scholar 

  106. Wang T, Yang Y, Zhou Y, Gong H (2017) Bioinformatics 33(5):677

    PubMed  Google Scholar 

  107. Wang T, Qiao Y, Ding W, Mao W, Zhou Y, Gong H (2019) Nature Machine Intelligence 1(8):347

    Google Scholar 

  108. Das R, Baker D (2008) Annu Rev Biochem 77:363

    CAS  PubMed  Google Scholar 

  109. Zhang Y, Skolnick J (2004) J Comput Chem 25(6):865

    CAS  PubMed  Google Scholar 

  110. Zhou H, Skolnick J (2007) Biophys J 93(5):1510

    CAS  PubMed  PubMed Central  Google Scholar 

  111. https://www.predictioncenter.org/casp13/zscores_final.cgi?formula=gdt_ts/, Accessed: 2021–03–04.

  112. https://www.predictioncenter.org/casp14/zscores_final.cgi?formula=gdt_ts/, Accessed: 2021–03–04.

  113. Thachuk C, Shmygelska A, Hoos HH (2007) BMC Bioinformatics 8(1):1

    Google Scholar 

  114. https://www.predictioncenter.org/casp11/zscores_final.cgi?formula=gdt_ts/, Accessed: 2021–03–04.

  115. https://www.predictioncenter.org/casp12/zscores_final.cgi?formula=gdt_ts/, Accessed: 2021–03–04.

  116. Bowie JU, Eisenberg D (1994) Proc Natl Acad Sci 91(10):4436

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang W, Yang J, He B, Walker SE, Zhang H, Govindarajoo B, Virtanen J, Xue Z, Shen HB, Zhang Y (2016) Proteins: Structure. Function, and Bioinformatics 84:76

    Google Scholar 

  118. Adhikari B, Cheng J (2018) BMC Bioinformatics 19(1):22

    PubMed  PubMed Central  Google Scholar 

  119. Bhattacharya D, Cao R, Cheng J (2016) Bioinformatics 32(18):2791

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bhattacharya D, Cheng J (2015) Sci Rep 5:16332

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pietal MJ, Bujnicki JM, Kozlowski LP (2015) Bioinformatics 31(21):3499

    CAS  PubMed  Google Scholar 

  122. Vassura M, Margara L, Di Lena P, Medri F, Fariselli P, Casadio R (2008) Bioinformatics 24(10):1313

    CAS  PubMed  Google Scholar 

  123. Hou J, Wu T, Cao R, Cheng J (2019) Proteins: Structure. Function, and Bioinformatics 87(12):1165

    CAS  Google Scholar 

  124. Ji S, Oruc T, Mead L, Rehman MF, Thomas CM, Butterworth S, Winn PJ (2019) PloS one 14(1):e0205214

    CAS  PubMed  PubMed Central  Google Scholar 

  125. X. Liu, F. Zhang, Z. Hou, Z. Wang, L. Mian, J. Zhang, J. Tang, (2020) arXiv preprint arXiv:2006.082181(2)

  126. D. Hendrycks, M. Mazeika, S. Kadavath, D. Song, (2019) arXiv preprint arXiv:1906.12340

  127. L. Jing, Y. Tian, IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

  128. A. Elnaggar, M. Heinzinger, C. Dallago, G. Rihawi, Y. Wang, L. Jones, T. Gibbs, T. Feher, C. Angerer, D. Bhowmik, et al., (2020) arXiv preprint arXiv:2007.06225

  129. Ali J, Khan R, Ahmad N, Maqsood I (2012) International Journal of Computer ScienceIssues (IJCSI) 9(5):272

    Google Scholar 

  130. Dey A (2016) International Journal of Computer Science and Information Technologies 7(3):1174

    Google Scholar 

  131. J. Zou, Y. Han, S.S. So, (2008) Artificial Neural Networks pp. 14–22

  132. S.K. Pal, S. Mitra, (1992)

  133. LeCun Y, Bengio Y, Hinton G (2015) Nature 521(7553):436

    CAS  PubMed  Google Scholar 

  134. J. Vig, A. Madani, L.R. Varshney, C. Xiong, R. Socher, N.F. Rajani, (2020) arXiv preprint arXiv:2006.15222

  135. Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, (2019) arXiv preprint arXiv:1909.11942

  136. R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, P. Chen, J. Canny, P. Abbeel, Y. Song, 2019 Advances in Neural Information Processing Systems pp. 9689–9701

  137. J. Devlin, M.W. Chang, K. Lee, K. Toutanova, (2018) arXiv preprint arXiv:1810.04805

  138. Vassura M, Margara L, Di Lena P, Medri F, Fariselli P, Casadio R (2008) IEEE/ACM Trans Comput Biol Bioinf 5(3):357

    CAS  Google Scholar 

  139. Pearson WR (2013) Curr Protoc Bioinformatics 43(1):3

    PubMed  PubMed Central  Google Scholar 

  140. Nuin PA, Wang Z, Tillier ER (2006) BMC Bioinformatics 7(1):1

    Google Scholar 

  141. J. Li, (2019) arXiv preprint arXiv:1908.00723

  142. A. Kurniawan, W. Jatmiko, R. Hertadi, N. Habibie, in 2020 International Workshop on Big Data and Information Security (IWBIS) (IEEE, 2020), pp. 73–80

  143. Emerson IA, Amala A (2017) Physica A 465:782

    CAS  Google Scholar 

  144. Lindahl E, Hess B, Van Der Spoel D (2001) Molecular modeling annual 7(8):306

    CAS  Google Scholar 

  145. Wang S, Sun S, Li Z, Zhang R, Xu J (2017) PLoS computational biology 13(1):e1005324

    PubMed  PubMed Central  Google Scholar 

  146. S. Targ, D. Almeida, K. Lyman, (2016) arXiv preprint arXiv:1603.08029

  147. Z. Li, Y. Lin, A. Elofsson, Y. Yao, BioMed Research International 2020 (2020)

  148. Yang H, Wang M, Yu Z, Zhao XM, Li A (2020) IEEE Access 8:80899

    Google Scholar 

  149. Xu J, Wang S (2019) Proteins: Structure. Function, and Bioinformatics 87(12):1069

    CAS  Google Scholar 

  150. Adhikari B (2020) Bioinformatics 36(2):470

    CAS  PubMed  Google Scholar 

  151. Wang S, Sun S, Xu J (2018) Proteins: Structure. Function, and Bioinformatics 86:67

    CAS  Google Scholar 

  152. https://mybinder.org/v2/gh/dwhswenson/contact_map/master?filepath=%2Fexamples, Accessed: 2021–05–14.

  153. Jones DT, Singh T, Kosciolek T, Tetchner S (2015) Bioinformatics 31(7):999

    CAS  PubMed  Google Scholar 

  154. Adhikari B, Hou J, Cheng J (2018) Bioinformatics 34(9):1466

    CAS  PubMed  Google Scholar 

  155. Michel M, Hurtado DM, Elofsson A (2019) Bioinformatics 35(15):2677

    CAS  PubMed  Google Scholar 

  156. Jones DT, Kandathil SM (2018) Bioinformatics 34(19):3308

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang G, Dunbrack RL (2005) Nucleic acids research 33(2):W94

    CAS  PubMed  PubMed Central  Google Scholar 

  158. AlQuraishi M (2019) BMC Bioinformatics 20(1):1

    Google Scholar 

  159. Prakash A, Jeffryes M, Bateman A, Finn RD (2017) Curr Protoc Bioinformatics 60(1):3

    PubMed  Google Scholar 

  160. Leinonen R, Diez FG, Binns D, Fleischmann W, Lopez R, Apweiler R (2004) Bioinformatics 20(17):3236

    CAS  PubMed  Google Scholar 

  161. Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA et al (2012) Nucleic Acids Res 40(D1):D26

    CAS  PubMed  Google Scholar 

  162. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, U. Consortium (2015) Bioinformatics 31(6):926

    CAS  PubMed  Google Scholar 

  163. Steinegger M, Söding J (2018) Nat Commun 9(1):1

    CAS  Google Scholar 

  164. K. O’Shea, R. Nash, 2015 arXiv preprint arXiv:1511.08458

  165. Kim P (2017) MATLAB deep learning. Springer, Berkeley, pp 121–147

    Google Scholar 

  166. W. Zaremba, I. Sutskever, O. Vinyals, (2014) arXiv preprint arXiv:1409.2329

  167. J. Guo, Unpubl. ms., Harbin Institute of Technology 40, 1 (2013)

  168. Werbos PJ (1990) Proc IEEE 78(10):1550

    Google Scholar 

  169. Bengio Y, Simard P, Frasconi P (1994) IEEE Trans Neural Networks 5(2):157

    CAS  PubMed  Google Scholar 

  170. R. Pascanu, T. Mikolov, Y. Bengio, (2013) International conference on machine learning. PMLR, New York, 1310–1318

  171. J. Chung, C. Gulcehre, K. Cho, Y. Bengio, 2014 arXiv preprint arXiv:1412.3555

  172. S. Zagoruyko, N. Komodakis, (2016) arXiv preprint arXiv:1605.07146

  173. Hochreiter S, Schmidhuber J (1997) Neural Comput 9(8):1735

    CAS  PubMed  Google Scholar 

  174. K. Cho, B. Van Merriënboer, D. Bahdanau, Y. Bengio, (2014) arXiv preprint arXiv:1409.1259

  175. A. Graves, G. Wayne, I. Danihelka, (2014) arXiv preprint arXiv:1410.5401

  176. D. Bahdanau, K. Cho, Y. Bengio, (2014) arXiv preprint arXiv:1409.0473

  177. M.T. Luong, H. Pham, C.D. Manning, (2015) arXiv preprint arXiv:1508.04025

  178. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, (2017) arXiv preprint arXiv:1706.03762

  179. M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, L. Kaiser, (2018) arXiv preprint arXiv:1807.03819

  180. Maiorov VN, Crippen GM (1994) J Mol Biol 235(2):625

    CAS  PubMed  Google Scholar 

  181. Xu J, Zhang Y (2010) Bioinformatics 26(7):889

    CAS  PubMed  PubMed Central  Google Scholar 

  182. J. Filipovič, J. Plhák, D. Střelák, 2015 International Conference on High Performance Computing & Simulation (HPCS). IEEE, New York, pp. 47–54

  183. https://predictioncenter.org/casp13/doc/help.html/, Accessed: 2021–04–04.

  184. Zhang L, Skolnick J (1998) Protein Sci 7(5):1201

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose papers could not be cited in this review due to space constraints.

Funding

It is part of my (V. A. Jisna) PhD work at the National Institute of Technology, Calicut, India. The research is funded by the Ministry of Human Resource Development, India.

Author information

Authors and Affiliations

Authors

Contributions

VAJ reviewed the papers and wrote the manuscript. PBJ supervised the work. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to V. A. Jisna.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jisna, V.A., Jayaraj, P.B. Protein Structure Prediction: Conventional and Deep Learning Perspectives. Protein J 40, 522–544 (2021). https://doi.org/10.1007/s10930-021-10003-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-10003-y

Keywords

Navigation