Skip to main content
Log in

Mathematical Models to Predict Flow Stress and Dynamically Recrystallized Grain Size of Deformed AA7150-5 wt% B4C Composite Fabricated Using Ultrasonic-Probe Assisted Stir Casting Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Mathematical models are among the new approaches employed to predict the properties of any material under various conditions. Mathematical models are essential for not only understanding the material properties but also estimating the cost of design, product life, and failure criteria of the product. Therefore, in the current investigation, the hot deformation (HD) behaviour and microstructure alteration of deformed AA7150-5 wt% B4C composite was studied through a mathematical model. The new AA7150-5 wt% B4C composite was fabricated through an ultrasonic-probe assisted (20 KHz, 1000 W) stir casting process. The hot compression test was performed on a hydraulic press for various deformation temperatures (623–773 K) and strain rates (0.01–1 s− 1). Based on the outcome, it is inferred that the flow stresses and microstructures of AA7150-5 wt% B4C composite was significantly altered during the hot compression test under various deformation conditions. The constitutive and dynamically recrystallized grain (DRXed) models were developed as a function of various deformation conditions of deformed AA7150-5 wt% B4C composite, which was then applied to forecast the flow stress and grain size behaviour for different deformation conditions. The flow stress and DRXed grain size were obtained through the proposed constitutive and DRXed models are correlated with experimental results, with excellent accuracy. The models developed are reliable to predict the AA7150-5 wt% B4C properties for various conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.B. Rao, J. Tribol. 140, 031601 (2017)

    Article  Google Scholar 

  2. M.A. Salem, I.G. El-Batanony, M. Ghanem, J. Eng. Mater. Technol. 139, 011007 (2017)

    Article  Google Scholar 

  3. R. Raj, D.G. Thakur, Materialwiss Werkstofftech 49, 1068 (2018)

    Article  CAS  Google Scholar 

  4. N. Pagidi Madhukar, C.S.P. Selvaraj, G.B. Rao, Veeresh Kumar, Compos. Part B Eng. 175, 107136 (2019)

    Article  Google Scholar 

  5. R. Miranda, University of Lisbon, Thesis, Ch.4 113 (2014)

  6. G.V. Kumar, P.P. Panigrahy, S. Nithika, R. Pramod, C.S.P. Rao, Compos. Part B Eng. 175, 107138 (2019)

    Article  CAS  Google Scholar 

  7. R. Singh, R. Singh, J.S. Dureja, I. Farina, F. Fabbrocino, Compos. Part B Eng. 115, 203 (2017)

    Article  CAS  Google Scholar 

  8. A.F. Fedotov, Compos. Part B Eng. 163, 139 (2019)

    Article  CAS  Google Scholar 

  9. G. Tosun, M. Kurt, Compos. Part B Eng. 174, 106965 (2019)

    Article  CAS  Google Scholar 

  10. N. Jin, H. Zhang, Y. Han, W. Wu, J. Chen, Mater. Charact. 60, 530 (2009)

    Article  CAS  Google Scholar 

  11. P. Madhukar, N. Selvaraj, C.S.P. Rao, G.B. Veereshkumar, J. Alloy. Compd. 815, 152464 (2020)

    Article  Google Scholar 

  12. P. Madhukar, N. Selvaraj, C.S.P. Rao, G.B. Veeresh Kumar, Ceram. Int. 46, 17103 (2020)

    Article  CAS  Google Scholar 

  13. P. Madhukar, N. Selvaraj, R. Gujjala, C.S.P. Rao, Ultrason. Sonochem. 58, 104665 (2019)

    Article  CAS  Google Scholar 

  14. U.K. Annigeri, G.V. Kumar, J. Test. Eval. 47, 4465 (2019)

    Google Scholar 

  15. G.E. Kodzhaspirov, M.I. Terentyev, Mater. Phys. Mech. 13, 70 (2012)

    CAS  Google Scholar 

  16. M. Shaban, B. Eghbali, J. Mater. Sci. Technol. 27, 359 (2011)

    Article  Google Scholar 

  17. Y.C. Lin, S.C. Luo, L.X. Yin, J. Alloy. Compd. 739, 590 (2018)

    Article  CAS  Google Scholar 

  18. R. Seetharam, S.K. Subbu, M.J. Davidson, Metallogr. Microstruct. Anal. 70, 176 (2018)

    Article  Google Scholar 

  19. P. Qiu, H. Li, X. Sun, Y. Han, G. Huang, W. Lu, D. Zhang, J. Alloy. Compd. 699, 874 (2017)

    Article  CAS  Google Scholar 

  20. X.J. Wang, K. Wu, H.F. Zhang, W.X. Huang, H. Chang, W.M. Gan, M.Y. Zheng, D.L. Peng, Mater. Sci. Eng. A 465, 78 (2007)

    Article  Google Scholar 

  21. K.K. Deng, K. Wu, X.J. Wang, Y.W. Wu, X.S. Hu, M.Y. Zheng, W.M. Gan, H.G. Brokmeier, Mater. Sci. Eng. A 527, 1630 (2010)

    Article  Google Scholar 

  22. A. El-Sabbagha, M. Solimanb, M. Tahaa, H. Palkowski, J. Mater. Process. Technol. 212, 497 (2012)

    Article  Google Scholar 

  23. T. Sheppard, A. Jackson, Mater. Sci. Tech. 13, 203 (1997)

    Article  CAS  Google Scholar 

  24. ​C. Shi, W. Mao, X.-G. Chen, Mater. Sci. Eng. A 571, 83 (2013)

    Article  Google Scholar 

  25. C. Shi, X.-G. Chen, Mater. Sci. Eng. A 596, 183 (2014)

    Article  Google Scholar 

  26. C. Shi, X.-G. Chen, Mater. Sci. Eng. A 613, 91 (2014)

    Article  Google Scholar 

  27. H. Zhang, N.P. Jin, J.H. Chen, T. Nonferr. Metal. Soc. 21, 437 (2011)

    Article  CAS  Google Scholar 

  28. F. Thevenot, J. Eur. Ceram. Soc. 6, 205 (1990)

    Article  CAS  Google Scholar 

  29. D. Patidar, R.S. Rana, Mater. Today Proc. 4, 2981 (2017)

  30. R.M. Mohanty, K. Balasubramanian, Key Eng. Mater. 395, 125 (2009)

    Google Scholar 

  31. R. Seetharam, S.K. Subbu, M.J. Davidson, J. Manuf. Process. 28, 309 (2017)

    Article  Google Scholar 

  32. M. Zhou, Y.C. Lin, J. Deng, Y.-Q. Jiang, Mater. Design 59, 141 (2014)

    Article  CAS  Google Scholar 

  33. H.Q. Huang, H.S. Di, N. Yan, J.C. Zhang, Y.G. Deng, R.D.K. Misra, J.P. Li, Acta Metall. Sin. Engl. 31, 503 (2018)

    Article  CAS  Google Scholar 

  34. M.R. Rokni, A. Zarei-Hanzaki, C.A. Widener, P. Changizian, J. Mater. Eng. Perform. 23, 4002 (2014)

    Article  Google Scholar 

  35. X. Xia, P. Sakaris, H.J. McQueen, Mater. Sci. Tech. 10, 487 (1994)

    Article  CAS  Google Scholar 

  36. D. Li, Q. Guo, S. Guo, H. Peng, Z. Wu, Mater. Design 32, 696 (2011)

    Article  Google Scholar 

  37. H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, X. Yang, Mater. Design 80, 51 (2015)

    Article  CAS  Google Scholar 

  38. Q.M. Guo, D.F. Li, S.L. Guo, Mater. Manuf. Process. 27, 990 (2012)

    Article  CAS  Google Scholar 

  39. X.J. Wang, X.S. Hu, K.B. Nie, K.K. Deng, K. Wu, M.Y. Zheng, Mater. Sci. Eng. A 545, 38 (2012)

    Article  CAS  Google Scholar 

  40. Y.C. Lin, X.-M. Chen, Mater. Design 32, 1733 (2011)

    Article  CAS  Google Scholar 

  41. C.M. Sellars, J. McG. Tegart, Int. Metall. Rev. 17, 1 (1972)

  42. C. Zener, J.H. Hollomon, J. Appl. Phys. 15, 22 (1944)

    Article  Google Scholar 

  43. L. Chen, G. Zhao, J. Yu, W. Zhang, Mater. Design 66, 129 (2015)

    Article  CAS  Google Scholar 

  44. W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, 8th edn. (Butterworth-Heinemann, Oxford, 2003)

    Google Scholar 

  45. T. Matsui, H. Takizawa, H. Kikuchi, S. Wakita, in Proceedings of the 9th International Symposium on Superalloys, ed. by T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J.  Schim. Superalloys 2000, Seven Springs, September 17–21 2000 (TMS, Warrendale, 2000), pp. 127–133

  46. R. Seetharam, S.K. Subbu, M.J. Davidson, J. Eng. Mater. T. ASME 140, 021003 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. M Raja Vishwanathan, Head of Humanities & Social Science Department, National Institute of Technology, Warangal, Telangana, India, for spending valuable time to proofread the paper and for his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Seetharam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seetharam, R., Madhukar, P., Yoganjaneyulu, G. et al. Mathematical Models to Predict Flow Stress and Dynamically Recrystallized Grain Size of Deformed AA7150-5 wt% B4C Composite Fabricated Using Ultrasonic-Probe Assisted Stir Casting Process. Met. Mater. Int. 28, 931–944 (2022). https://doi.org/10.1007/s12540-021-00967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00967-y

Keywords

Navigation