Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Viscophobic turning dictates microalgae transport in viscosity gradients

Abstract

Gradients in fluid viscosity characterize microbiomes ranging from mucus layers on marine organisms1 and human viscera2,3 to biofilms4. Although such environments are widely recognized for their protective effects against pathogens and their ability to influence cell motility2,5, the physical mechanisms regulating cell transport in viscosity gradients remain elusive6,7,8, primarily due to a lack of quantitative observations. Through microfluidic experiments, we directly observe the transport of model biflagellated microalgae (Chlamydomonas reinhardtii) in controlled viscosity gradients. We show that despite their locally reduced swimming speed, the expected cell accumulation in the viscous region9,10 is stifled by a viscophobic turning motility. This deterministic cell rotation—consistent with a flagellar thrust imbalance11,12—reorients the swimmers down the gradient, causing their accumulation in the low-viscosity zones for sufficiently strong gradients. Corroborated by Langevin simulations and a three-point force model of cell propulsion, our results illustrate how the competition between viscophobic turning and viscous slowdown ultimately dictates the fate of population-scale microbial transport in viscosity gradients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Viscosity gradient strength regulates dispersal of swimming microalgae.
Fig. 2: Coupling of swimming kinematics to viscosity gradient induces viscophobic turning.
Fig. 3: Simulations illustrate the competition between viscophobic drift and viscous slowdown driving cell accumulation.

Similar content being viewed by others

Data availability

Data files used during the current study are publicly available at https://doi.org/10.7910/DVN/QXI6X1. Source data are provided with this paper.

Code availability

The algorithms and simulation codes are described in the Methods and Supplementary Information. Code to reproduce the analysis reported is publicly available at https://doi.org/10.7910/DVN/QXI6X1.

References

  1. Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004).

    Article  ADS  Google Scholar 

  2. Wheeler, K. M. et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat. Microbiol. 4, 2146–2154 (2019).

    Article  Google Scholar 

  3. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    Article  Google Scholar 

  4. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    Article  Google Scholar 

  5. Swidsinski, A. et al. Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm. Bowel Dis. 13, 963–970 (2007).

    Article  Google Scholar 

  6. Petrino, M. G. & Doetsch, R. N. ‘Viscotaxis’, a new behavioural response of Leptospira interrogans (biflexa) Strain b16. J. Gen. Microbiol. 109, 113–117 (1978).

    Article  Google Scholar 

  7. Daniels, M. J., Longland, J. M. & Gilbart, J. Aspects of motility and chemotaxis in spiroplasmas. J. Gen. Microbiol. 118, 429–436 (1980).

    Google Scholar 

  8. Sherman, M. Y., Timkina, E. & Glagolev, A. Viscosity taxis in Escherichia coli. FEMS Microbiol. Lett. 13, 137–140 (1982).

    Article  Google Scholar 

  9. Schnitzer, M. J. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553–2568 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  10. Frangipane, G. et al. Dynamic density shaping of photokinetic E. coli. elife 7, e36608 (2018).

    Article  Google Scholar 

  11. Liebchen, B., Monderkamp, P., Ten Hagen, B. & Löwen, H. Viscotaxis: microswimmer navigation in viscosity gradients. Phys. Rev. Lett. 120, 208002 (2018).

    Article  ADS  Google Scholar 

  12. Datt, C. & Elfring, G. J. Active particles in viscosity gradients. Phys. Rev. Lett. 123, 158006 (2019).

    Article  ADS  Google Scholar 

  13. Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).

    Article  ADS  Google Scholar 

  14. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article  Google Scholar 

  15. Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972).

  16. Jékely, G. et al. Mechanism of phototaxis in marine zooplankton. Nature 456, 395–399 (2008).

    Article  ADS  Google Scholar 

  17. Durham, W. M., Kessler, J. O. & Stocker, R. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323, 1067–1070 (2009).

    Article  ADS  MATH  Google Scholar 

  18. Sengupta, A., Carrara, F. & Stocker, R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543, 555–558 (2017).

    Article  ADS  Google Scholar 

  19. Blakemore, R. P. Magnetotactic bacteria. Science 190, 377–379 (1975).

    Article  ADS  Google Scholar 

  20. Guadayol, Ò. et al. Microrheology reveals microscale viscosity gradients in planktonic systems. Proc. Natl Acad. Sci. USA 118, e2011389118 (2021).

    Article  Google Scholar 

  21. Lai, S. K., Wang, Y. Y., Wirtz, D. & Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009).

    Article  Google Scholar 

  22. Jatkar, A. A. et al. Measuring mucus thickness in reef corals using a technique devised for vertebrate applications. Mar. Biol. 157, 261–267 (2010).

    Article  Google Scholar 

  23. Atuma, C., Strugala, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Liver Physiol. 280, G922–G929 (2001).

    Article  Google Scholar 

  24. Stabili, L., Schirosi, R., Parisi, M. G., Piraino, S. & Cammarata, M. The mucus of Actinia equina (Anthozoa, Cnidaria): an unexplored resource for potential applicative purposes. Mar. Drugs 13, 5276–5296 (2015).

    Article  Google Scholar 

  25. Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).

    Article  Google Scholar 

  26. Qin, B., Gopinath, A., Yang, J., Gollub, J. P. & Arratia, P. E. Flagellar kinematics and swimming of algal cells in viscoelastic fluids. Sci. Rep. 5, 9190 (2015).

    Article  ADS  Google Scholar 

  27. Martinez, V. A. et al. Flagellated bacterial motility in polymer solutions. Proc. Natl Acad. Sci. USA 111, 17771–17776 (2014).

    Article  ADS  Google Scholar 

  28. Shoele, K. & Eastham, P. S. Effects of nonuniform viscosity on ciliary locomotion. Phys. Rev. Fluids 3, 043101 (2018).

    Article  ADS  Google Scholar 

  29. Harris, E. H. The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and its Laboratory Use Vol. 1 (Academic, 2009).

  30. Goldstein, R. E. Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47, 343–375 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  31. Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110, 1187–1192 (2013).

    Article  ADS  Google Scholar 

  32. Cates, M. E. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys. 75, 042601 (2012).

    Article  ADS  Google Scholar 

  33. Polin, M., Tuval, I., Drescher, K., Gollub, J. P. & Goldstein, R. E. Chlamydomonas swims with two gears in a eukaryotic version of run-and-tumble locomotion. Science 325, 487–490 (2009).

    Article  ADS  Google Scholar 

  34. Geyer, V. F., Jülicher, F., Howard, J. & Friedrich, B. M. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga. Proc. Natl Acad. Sci. USA 110, 18058–18063 (2013).

    Article  ADS  Google Scholar 

  35. Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  36. Kuchka, M. R. & Jarvik, J. W. Short-flagella mutants of Chlamydomonas reinhardtii. Genetics 115, 685–691 (1987).

    Article  Google Scholar 

  37. Oppenheimer, N., Navardi, S. & Stone, H. A. Motion of a hot particle in viscous fluids. Phys. Rev. Fluids 1, 014001 (2016).

    Article  ADS  Google Scholar 

  38. Waisbord, N. & Guasto, J. S. Peculiar polygonal paths. Nat. Phys. 14, 1161–1162 (2018).

    Article  Google Scholar 

  39. Rupprecht, J. F., Waisbord, N., Ybert, C., Cottin-Bizonne, C. & Bocquet, L. Velocity condensation for magnetotactic bacteria. Phys. Rev. Lett. 116, 168101 (2016).

    Article  ADS  Google Scholar 

  40. Sager, R. & Granick, S. Nutritional studies with Chlamydomonas reinhardi. Ann. NY Acad. Sci. 56, 831–838 (1953).

    Article  ADS  Google Scholar 

  41. Ebagninin, K. W., Benchabane, A. & Bekkour, K. Rheological characterization of poly(ethylene oxide) solutions of different molecular weights. J. Colloid Interf. Sci. 336, 360–367 (2009).

    Article  ADS  Google Scholar 

  42. Grigorescu, G. & Kulicke, W.-M. Prediction of Viscoelastic Properties and Shear Stability of Polymers in Solution (Springer, 2000).

  43. Xia, Y. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  ADS  Google Scholar 

  44. Devanand, K. & Selser, J. C. Polyethylene oxide does not necessarily aggregate in water. Nature 343, 739–741 (1990).

    Article  ADS  Google Scholar 

  45. Waigh, T. A. Microrheology of complex fluids. Rep. Prog. Phys. 68, 685–742 (2005).

    Article  ADS  Google Scholar 

  46. Kreis, C. T., Le Blay, M., Linne, C., Makowski, M. M. & Bäumchen, O. Adhesion of Chlamydomonas microalgae to surfaces is switchable by light. Nat. Phys. 14, 45–49 (2018).

    Article  Google Scholar 

  47. Rafaï, S., Jibuti, L. & Peyla, P. Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102 (2010).

    Article  ADS  MATH  Google Scholar 

  48. Cheezum, M. K., Walker, W. F. & Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001).

    Article  Google Scholar 

  49. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interf. Sci. 179, 298–310 (1996).

    Article  ADS  Google Scholar 

  50. Ouellette, N. T., Xu, H. & Bodenschatz, E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. Fluids 40, 301–313 (2006).

    Article  Google Scholar 

  51. Crenshaw, H. C. A new look at locomotion in microorganisms: rotating and translating. Am. Zool. 36, 608–618 (1996).

    Article  Google Scholar 

  52. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 48102 (2007).

    Article  ADS  Google Scholar 

  53. Rusconi, R., Guasto, J. S. & Stocker, R. Bacterial transport suppressed by fluid shear. Nat. Phys. 10, 212–217 (2014).

    Article  Google Scholar 

  54. Dehkharghani, A., Waisbord, N., Dunkel, J. & Guasto, J. S. Bacterial scattering in microfluidic crystal flows reveals giant active Taylor–Aris dispersion. Proc. Natl Acad. Sci. USA 116, 11119–11124 (2019).

    Article  ADS  Google Scholar 

  55. Korson, L., Drost-Hansen, W. & Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. J. Elfring for helpful discussions and R. J. Henshaw for comments on the manuscript. This work was funded by NSF awards CAREER-1554095 and CBET-1701392 to J.S.G.

Author information

Authors and Affiliations

Authors

Contributions

M.R.S., N.W. and J.S.G. designed the research. M.R.S. and N.W. performed experiments, and M.R.S., N.W. and D.M.W. analysed experimental data. All authors contributed to simulations and theoretical analyses and wrote the paper.

Corresponding author

Correspondence to Jeffrey S. Guasto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Arnold Mathijssen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Time evolution of the viscosity profile.

Transient diffusion of the PEO molecules results in a viscosity profile that evolves from a near step function to a smooth monotonic profile. Swimming cell assays are analyzed in the time range 30≤t≤90 min, when the gradient evolves more slowly, and the profile is approximately linear in the center of the channel. The slope of the viscosity profile is quantified by fitting a line to the five central points in the channel. The reported viscosity gradient, η, is the average slope of the viscosity profiles from 30-90 min (Extended Data Table 1).

Source data

Extended Data Fig. 2 Spatially resolved microrheology quantifies the viscosity profile in a microfluidic device.

a, The mean square displacement (MSD) of tracer particles in different locations across the microfluidic viscosity gradient device at time, t = 10 min ( η = 3.4 × 10−3cPμm−1; see also Extended Data Fig. 1). Solid lines are linear fits to the MSDs. b, The slopes of the tracer particle MSDs in a are used to determine the spatially resolved viscosity profile, η(x), across 11 bins of the microchannel width using Stokes-Einstein relation (Supplementary Section 2.2). Shaded region (smaller than the markers) represents the propagation of uncertainty from the error of the fit in a.

Source data

Extended Data Fig. 3 Control experiments show negligible chemotaxis and chemokinetic effects for wild-type C. reinhardtii in PEO gradients.

a,b, Viscotaxis assays reveal the local, measured cell density (a) and mean swimming speed (b) remain spatially uniform for small viscosity gradients. Base PEO concentrations of 0.05% in viscous media inlet (η = 0.46 × 10−3 cPμm−1; N=3; right) are comparable to the control experiment with no viscosity gradient (η = 0 cPμm−1; N=4; left, repeated from Fig. 1h,i). For these control experiments, the base PEO concentration (0.05%) is nearly the same order of magnitude as the maximum gradient (0.82%), yet has no appreciable effect on the local viscosity. Thus, the lack of discernible cell accumulation and the lack of statistically significant spatial variations in swimming speed indicate that PEO likely does not act as a chemoattractant nor does it have any chemokinetic effect on C. reinhardtii. The shaded areas represent the standard error.

Source data

Extended Data Fig. 4 Mean square displacements of tracer particles for viscosity measurements in bulk fluid.

Microrheology quantifies the viscosity of PEO solutions in M1 media at various concentrations. The slopes of linear fits (solid lines) to the mean square displacements (MSDs; markers) yield the tracer particle diffusion coefficients, which are used to determine the viscosity of the solution via the Stokes-Einstein relation (Supplementary Section 2.1). Measured viscosities are listed in Extended Data Table 2.

Source data

Extended Data Fig. 5 Measurement of mean square displacement (MSD) of wild-type C. reinhardtii in uniform viscosity to determine rotational diffusion coefficient.

Mean square displacements of C. reinhardtii were measured in 0.996 cP ( ≈ 1,800 trajectories) and 4.48 cP ( ≈ 10,700 trajectories) bulk viscosities. The resulting MSDs were fitted using an analytical result for a persistent random walk52,53, \(\langle \Delta {r}^{2}\rangle =0.5\ {V}^{2}/{D}_{r}^{2}(2{D}_{r}t+\exp (-2{D}_{r}t)-1)\), where the ensemble averaged cell swimming speeds, V, are known independently (74.7 μm/s and 22.7 μm/s, respectively), and the rotational diffusion coefficient, Dr, is the lone fitting parameter. The resulting rotational diffusion coefficients were Dr = 0.070 s−1 and 0.068 s−1. As a sensitivity analysis, varying the fit window from 10 s to 20 s resulted in Dr = 0.071 ± 0.006 s−1 and 0.068 ± 0.001 s−1 for 0.996 cP and 4.48 cP, respectively, where the error is the standard deviation of the resulting rotational diffusion coefficients.

Source data

Extended Data Fig. 6 Time evolution of swimming cell orientation distribution in a viscosity gradient.

a-c, In the absence of a viscosity gradient or viscophobic turning, an initially random uniform distribution of cell swimming orientations remains random, as illustrated across experiments, Langevin simulations, and a Fokker-Plank (FP) model, respectively. d-f, In contrast, in the presence of a viscosity gradient or orientation dependent viscophobic turning rate, the orientation of cells readily condenses in the down-gradient direction. Experimentally measured cell swimming trajectories were sub-sampled from the central portion (400μm≤x≤600μm) of the microfluidic gradient generating channel with a uniform orientation distribution p(θt) at t = 0 for η = 0 cP μm−1 (a; control, ≈ 1, 170 trajectories) and for η = 7.2 × 10−3 cP μm−1 (d; ≈ 1,330 trajectories). Peaks in a at ≈ 6 s are due to cell collisions with microchannel walls. Langevin simulations in the absence (b) and presence (e) of viscophobic turning (\({\omega }_{visc}=0.07\ {{\rm{s}}}^{-1},\Delta V/{V}_{\max }=0.776\)) show quantitative agreement with experiments having matching conditions (Extended Data Fig. 7 and Fig. 3a,b) in a and d, respectively. A one-dimensional Fokker-Planck model of the cell swimming orientation distribution (Supplementary Section 5.3) likewise captures the time evolution of the conditional probability density for the control (c) and corresponding maximum viscosity gradient conditions (f; Fig. 3b).

Source data

Extended Data Fig. 7 Comparison of cell density profile due to (viscous) slowdown and Langevin simulations incorporating viscophobic turning.

Langevin simulations enable independent exploration of the parameters ΔV/Vmax and ωvisc, and include an empirical wall scattering boundary condition (Supplementary Section 5.1). Cell density profiles, ρ(x), are shown for fixed ΔV/Vmax and a range of turning rate amplitudes (solid lines). The resulting density profiles are compared to a theoretical distribution, ρ0, for cells with spatially varying swimming speed in the absence of viscophobic turning (black dashed curve; Supplementary Section 4.1).

Source data

Extended Data Table 1 Measured viscosity gradients for viscotaxis experiments
Extended Data Table 2 Viscosity of bulk PEO solutions
Extended Data Table 3 Measured transient viscosity gradient for viscotaxis experiments

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–4 and references.

Reporting Summary

Supplementary Video 1

Wild-type C. reinhardtii swimming in a uniform viscosity environment (η = 0 cP μm−1). Microfluidic channel containing M1 media only (×10 objective; 30 fps; real-time playback).

Supplementary Video 2

Wild-type C. reinhardtii swimming in a microfluidic viscosity gradient (η = 7.2 × 10−3 cP μm−1). Initially stratified microfluidic channel contained 0.82% (w/v) PEO in M1 media on left and M1 media on right (×10 objective; 30 fps; real-time playback).

Source data

Source Data Fig. 1

Numeric data for Fig. 1f–j.

Source Data Fig. 2

Numeric data for Fig. 2.

Source Data Fig. 3

Numeric data for Fig. 3.

Source Data Extended Data Fig. 1

Numeric data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Numeric data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Numeric data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Numeric data for Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Numeric data for Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Numeric data for Extended Data Fig. 6.

Source Data Extended Data Fig. 7

Numeric data for Extended Data Fig. 7.

Source Data Extended Data Table 1

Numeric data for Extended Data Table 1.

Source Data Extended Data Table 2

Numeric data for Extended Data Table 2.

Source Data Extended Data Table 3

Numeric data for Extended Data Table 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stehnach, M.R., Waisbord, N., Walkama, D.M. et al. Viscophobic turning dictates microalgae transport in viscosity gradients. Nat. Phys. 17, 926–930 (2021). https://doi.org/10.1038/s41567-021-01247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01247-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing