Skip to main content
Log in

Dielectric spectroscopy of melt-extruded polypropylene and as-grown carbon nanofiber composites

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this work, different weight contents of as-grown carbon nanofibers (CNFs), produced by chemical vapor deposition, were melt-extruded with polypropylene (PP) and their morphologic, structure and dielectric properties examined. The morphologic analysis reveals that the CNFs are randomly distributed in the form of agglomerates within the PP matrix, whereas the structural results depicted by Raman analysis suggest that the degree of disorder of the as-received CNFs was not affected in the PP/CNF composites. The AC conductivity of PP/CNF composites at room temperature evidenced an insulator–conductor transition in the vicinity of 2 wt.%, corresponding to a remarkable rise of the dielectric permittivity up to \(\sim \) 12 at 400 Hz, with respect to the neat PP (\(\sim \) 2.5). Accordingly, the AC conductivity and dielectric permittivity of PP/CNF 2 wt.% composites were evaluated by using power laws and discussed in the framework of the intercluster polarization model. Finally, the complex impedance and Nyquist plots of the PP/CNF composites are analyzed by using equivalent circuit models, consisting of a constant phase element (CPE). The analysis gathered in here aims at contributing to the better understanding of the enhanced dielectric properties of low-conducting polymer composites filled with carbon nanofibers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.H. Foulger, J. Appl. Polym. Sci. 72, 1573 (1999)

    Article  Google Scholar 

  2. X. Jing, W. Zhao, L. Lan, J. Mater. Sci. Lett. 19, 377 (2000)

    Article  Google Scholar 

  3. M. Knite et al., Adv. Eng. Mater. 6, 746 (2004)

    Article  Google Scholar 

  4. E. Logakis et al., Polymer 50, 5103 (2009)

    Article  Google Scholar 

  5. S. Azizi et al., J. Appl. Polym. Sci. 136, 47043 (2019)

  6. S. Bhadra, M. Rahaman, P. Noorunnisa Khanam, in Carbon-Containing Polymer Composites. ed. by M. Rahaman, D. Khastgir, A.K. Aldalbahi (Springer, Singapore, 2019), p. 397

  7. G.V. Aldica et al., J. Appl. Polym. Sci. 134, 45297 (2017)

  8. D.J. Burton et al., In Proceedings of the 46th International SAMPE Symposium and Exhibition (Long Beach, CA, 2001), p. 647

  9. S.A. Gordeyev et al., Phys. B 279, 33 (2000)

    Article  ADS  Google Scholar 

  10. Z.M. Dang et al., Prog. Mater. Sci. 57, 660 (2012)

    Article  Google Scholar 

  11. A.J. Paleo et al., Phys. B 516, 41 (2017)

    Article  ADS  Google Scholar 

  12. G.G. Tibbetts, I.C. Finegan, C. Kwag, MRS Proc. 733, T2.3 (2002)

    Article  Google Scholar 

  13. J.G. Lawrence, L.M. Berhan, A. Nadarajah, J. Nanoparticle Res. 10, 1155 (2008)

    Article  ADS  Google Scholar 

  14. J. Heinze, Nachr. Chem. Tech. Lab. 36, 286 (1988)

    Article  Google Scholar 

  15. P. Zoltowski, J. Electroanal. Chem. 443, 149 (1998)

    Article  Google Scholar 

  16. Z. Stoynov, Z.B. Stoĭnov, D. Vladikova, Differential Impedance Analysis (Marin Drinov Academic Publishing House, Sofia city, 2005)

    Google Scholar 

  17. A.J. Paleo et al., Polym. Eng. Sci. 54, 117 (2014)

    Article  Google Scholar 

  18. R.M. Khafagy, Y.A. Badr, J. Polym. Sci. Part B: Polym. Phys. 43, 2829 (2005)

    Article  ADS  Google Scholar 

  19. N. Chibani et al., J. Vinyl Addit. Technol. 22, 231 (2016)

    Article  Google Scholar 

  20. K. Yuniarto, et al., in AIP Conference Proceedings. (2016)

  21. A.S. Nielsen, R. Pyrz, J. Mater. Sci. 38, 597 (2003)

    Article  ADS  Google Scholar 

  22. Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater. 2, 557 (1990)

    Article  Google Scholar 

  23. J.H. Lehman et al., Carbon 49, 2581 (2011)

    Article  Google Scholar 

  24. D.S. Knight, W.B. White, J. Mater. Res. 4, 385 (1989)

    Article  ADS  Google Scholar 

  25. A.J. Paleo et al., Carbon 150, 408 (2019)

    Article  Google Scholar 

  26. K.L. Stokes, et al., in International Conference on Thermoelectrics, ICT, Proceedings, p. 164. (1996)

  27. D. Stauffer, A. Aharony, Introduction To Percolation Theory (2018). https://doi.org/10.1201/9781315274386

  28. B. Nigro, C. Grimaldi, P. Ryser, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85, 011137 (2012)

  29. M. Panda, V. Srinivas, A.K. Thakur, Res. Phys. 5, 136 (2015)

    Google Scholar 

  30. D.J. Bergman, D. Stroud, in Solid State Physics. ed. by H. Ehrenreich, D. Turnbull (Academic Press, New York, 1992), p. 147

  31. D.J. Bergman, Y. Imry, Phys. Rev. Lett. 39, 1222 (1977)

    Article  ADS  Google Scholar 

  32. A.K. Barick, D.K. Tripathy, Compos. Part A Appl. Sci. Manufact. 41, 1471 (2010)

    Article  Google Scholar 

  33. G. Sui et al., Acta Mater. 56, 2381 (2008)

    Article  ADS  Google Scholar 

  34. K. Benaboud et al., Annales de Chimie Science des Matériaux 23, 315 (1998)

    Article  Google Scholar 

  35. A. Linares et al., Compos. Sci. Technol. 71, 1348 (2011)

    Article  Google Scholar 

  36. C.R. Bowen, S. Buschhorn, V. Adamaki, Pure Appl. Chem. 86, 765 (2014)

    Article  Google Scholar 

  37. M. Arjmand, U. Sundararaj, Polym. Eng. Sci. 55, 173 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

A. J. Paleo gratefully acknowledges support from FCT-Foundation for Science and Technology by the “plurianual” 2020–2023 Project UIDB/00264/2020 and the TSSiPRO-NORTE-01-0145-FEDER-000015 funded by the regional operational program NORTE 2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

A. J. Paleo processed the polymer composites and planned the whole characterization. The dielectric spectroscopy experiments were made by A. J. Paleo under supervision of J. A. Moreira. M. S. Martins carried out the DC electric analysis. M. F. Cerqueira contributed to the FTIR and Raman analysis. Z. Samir, N. Aribou and Y. Nioua contributed to the AC, dielectric and impedance analysis. The drafting of the manuscript was prepared by A. J. Paleo under main supervision of J. Agostinho Moreira and M. E. Achour.

Corresponding authors

Correspondence to A. J. Paleo or M. E. Achour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paleo, A.J., Samir, Z., Aribou, N. et al. Dielectric spectroscopy of melt-extruded polypropylene and as-grown carbon nanofiber composites. Eur. Phys. J. E 44, 73 (2021). https://doi.org/10.1140/epje/s10189-021-00079-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00079-w

Navigation