Skip to main content
Log in

Non-stationary scattering theory and parametric resonance in ultracold Rydberg plasmas subjected to a perturbation by a terahertz acoustic wave

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Within the framework of a non-stationary scattering theory formulas for electron scattering cross sections on an arbitrary time-periodic potential are derived. These formulas to a weakly ionized ultracold Rydberg plasma subjected to a perturbation by a terahertz acoustic wave and a laser field are applied. Our result for laser-assisted electron-atom scattering generalizes the Kroll-Watson formula to the case of an elliptically polarized electromagnetic wave. Based on the kinetic approach we discuss a mechanism of the scattering of plasma charges on neutral atoms, vibrating in the field of the external acoustic wave, leading to a renormalization of the electron plasma frequency. Additionally, within the framework of the hydrodynamic approach, we demonstrate the possibility of a parametric resonance amplification of electron and ion density oscillations in weakly ionized two component ultracold Rydberg plasmas under the influence of a laser field and as high-frequency acoustic wave.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article].

References

  1. M. Fitaire, T.D. Mantei, Phys. Fluids 15, 464 (1972)

    Article  ADS  Google Scholar 

  2. V. Hasegava, J. Soc. Jpn. 37, 193 (1974)

    Article  ADS  Google Scholar 

  3. G. A. Galechyan, Usp. Fiz. Nauk 165, 1357 (1995) [Physics-Uspekhi 38(12), 1309 (1995)]

  4. V.S. Soukhomlinov, A.L. Kuranov, V.V. Kuchinsky, V.Y. Sepman, Y A. Tolmachev, AIAA-99-3536, 30th Plasmadynamics and Lasers Conference Norfolk, VA (1999)

  5. V. Soukhomlinov, N. Gerasimov, V.A. Sheverev, J. Phys. D: Appl. Phys. 40, 2507 (2007)

    Article  ADS  Google Scholar 

  6. V. Soukhomlinov, N. Gerasimov, V. Sheverev, J. Appl. Phys. 104, 043301 (2008)

    Article  ADS  Google Scholar 

  7. G.A. Galechyan, Tech. Phys. 50, 1191 (2005)

    Article  Google Scholar 

  8. V.S. Soukhomlinov, V.A. Sheverev, M.V. Otugen, Phys. Fluids 17, 058102 (2005)

    Article  ADS  Google Scholar 

  9. V. Soukhomlinov, V. Sheverev, G. Raman, M.V. Otugen, V. Stepaniuk, 1st AIAA Flow Control Conference, 24-26 June. 2002. St. Louis. MO

  10. V. Stepaniuk, V. Sheverev, V. Otugen, C. Tarau, G. Raman, V. Soukhomlinov, AIAA J. 42, 545 (2004)

    Article  ADS  Google Scholar 

  11. V. Soukhomlonov, N. DiZinno, V. Sheverev, V. Otugen, G. Vradis G. 43rd Aerospace Sciences Meeting and Exhibit 10-13 January. Reno, Nevada (2005)

  12. V. Soukhomlinov, V. Stepaniuk, C. Tarau et al., AIAA 2002–2731 (2002)

  13. F.K. Abdullaev, R.A. Kraenkel, Phys. Rev. A 62, 023613 (2000)

    Article  ADS  Google Scholar 

  14. G.P. Conangla, D. Nwaigwe, J. Wehr, R.A. Rica, Phys. Rev. A 101, 053823 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Ridinger, C. Weiss, Phys. Rev. A 79, 013414 (2009)

    Article  ADS  Google Scholar 

  16. A. Maitra, D. Leibfried, D. Ullmo, H. Landa, Phys. Rev. A 99, 043421 (2019)

    Article  ADS  Google Scholar 

  17. A. Maitra, D. Leibfried, D. Ullmo, H. Landa, Phys. Rev. Res. 1, 012012(R) (2019)

    Article  Google Scholar 

  18. M.L. Goldberger, K.M. Watson, Collision Theory (Wiley, New York, 1964)

    MATH  Google Scholar 

  19. J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Wiley, New York, 1972)

    Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Quantum Mechanics. Vol. 3 of: Course of Theoretical Physics. (Pergamon Press, Oxford, 1992)

  21. F.V. Bunkin, M.V. Fedorov, Zh. Eksp. Teor. Fiz. 49, 1215 (1965) [Sov. Phys. JETP 22, 844 (1966)

  22. N.M. Kroll, K.M. Watson, Phys. Rev. A 8, 804 (1973)

    Article  ADS  Google Scholar 

  23. M. Gavrila, J.Z. Kamihski, Phys. Rev. Lett. 52, 613 (1984)

    Article  ADS  Google Scholar 

  24. S. Varro, F. Ehlotzky, J. Phys. B. At. Mol. Opt. Phys. 28, 1613 (1995)

  25. N.L. Manakov, A.F. Starace, A.V. Flegel, M.V. Frolov, Pis’ma Zh. Eksp. Teor. Fiz. 76, 316 (2002) [JETP Lett. 76, 258 (2002)]

  26. A.V. Flegel, M.V. Frolov, N.L. Manakov, A.F. Starace, Phys. Rev. Lett. 102, 103201 (2009)

  27. A.V. Flegel, M.V. Frolov, N.L. Manakov, A.F. Starace, A.N. Zheltukhin, Phys. Rev. A 87, 013404 (2013)

  28. E.A. Manykin, M.I. Ozhovan, P.P. Poluektov, Dokl. Akad. Nauk SSSR 260, 1096 (1981) [Sov. Phys. Dokl. 26, 974 (1981)]

  29. E.A. Manykin, M.I. Ozhovan, P.P. Poluektov, Zh. Eksp. Teor. Fiz. 84, 442 (1983) [Sov. Phys. JETP 57, 256 (1983)]

  30. E.A. Manykin, M.I. Ozhovan, P.P. Poluektov, Zh. Eksp. Teor. Fiz. 102, 804 (1992) [Sov. Phys. JETP 75, 440 (1992)]

  31. C. Aman, J.B.C. Pettersson, L. Holmlid, Chem. Phys. 147, 189 (1990)

    Article  Google Scholar 

  32. R.S. Svensson, L. Holmlid, L. Lundgren, J. Appl. Phys. 70, 1489 (1991)

    Article  ADS  Google Scholar 

  33. C. Aman, J.B.C. Pettersson, H. Lindroth, L. Holmlid, J. Mater. Res. 7, 100 (1992)

    Article  ADS  Google Scholar 

  34. E.A. Manykin, M.I. Ozhovan, P.P. Poluektov, Khim. Fiz. 18, 88 (1999)

    Google Scholar 

  35. T.C. Killian, S. Kulin, S.D. Bergeson, L.A. Orozco, C. Orzel, S.L. Rolston, Phys. Rev. Lett. 83, 4776 (1999)

  36. M.P. Robinson, B.L. Tolra, M.W. Noel, T.F. Gallagher, P. Pillet, Phys. Rev. Lett. 85, 4466 (2000)

    Article  ADS  Google Scholar 

  37. T. Pohl, T. Pattard, J.M. Rost, Phys. Rev. A 68, 010703(R) (2003)

    Article  ADS  Google Scholar 

  38. S.D. Bergeson, R.L. Spencer, Phys. Rev. E 67, 026414 (2003)

    Article  ADS  Google Scholar 

  39. N. Vanhaecke, D. Comparat, D.A. Tate, P. Pillet, Phys. Rev. A 71, 013416 (2005)

    Article  ADS  Google Scholar 

  40. T.C. Killian, T. Pattard, T. Pohl, J.M. Rost, Phys. Rep. 449, 77 (2007)

    Article  ADS  Google Scholar 

  41. H.A. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956), p. 262

    Google Scholar 

  42. W.C. Henneberger, Phys. Rev. Lett. 21, 838 (1968)

    Article  ADS  Google Scholar 

  43. T.C. Killian, S. Kulin, S.D. Bergeson et al., Phys. Rev. Lett. 83, 4776 (1999)

    Article  ADS  Google Scholar 

  44. S. Kulin, T.C. Killian, S.D. Bergeson, S.L. Rolston, Phys. Rev. Lett. 85, 318 (2000)

    Article  ADS  Google Scholar 

  45. T.C. Killian, M.J. Lim, S. Kulin et al., Phys. Rev. Lett. 86, 3759 (2001)

    Article  ADS  Google Scholar 

  46. M.P. Robinson, B.L. Tolra, M.W. Noel et al., Phys. Rev. Lett. 85, 4466 (2000)

    Article  ADS  Google Scholar 

  47. L.P. Pitaevskii, E.M. Lifshitz, Physical Kinetics. Vol. 10 of: Course of Theoretical Physics (Elsevier Science, Amsterdam, 2012)

  48. A. Adak, A.P.L. Robinson, P.K. Singh, G. Chatterjee, A.D. Lad, J. Pasley, Phys. Rev. Lett. 114, 115001 (2015)

  49. P.-A. Mante, A. Devos, A. Le Louarn, Phys. Rev. B 81, 113305 (2010)

    Article  ADS  Google Scholar 

  50. S. Sandeep, S.L. Heywood, R.P. Campion, A.J. Kent, R.N. Kini, Phys. Rev. B 98, 235303 (2018)

    Article  ADS  Google Scholar 

  51. Y.M. Aliev, V.P. Silin, JETP 48, 901 (1965), [Soviet Phys. JETP 21, 601 (1965)]

  52. J. Okutani, Parametric Excitations of Plasma Oscillations II, Preprint (Tokyo University, 1969)

  53. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis (Cambridge University Press, Cambridge, 1927)

    MATH  Google Scholar 

  54. L.D. Landau, E.M. Lifshitz, Mechanics Vol. of: Course of Theoretical Physics (Pergamon Press, Oxford, 1960)

    Google Scholar 

Download references

Acknowledgements

I am deeply grateful to A. L. Mitler for performing numerical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav M. Rylyuk.

Appendix: Calculation the correction \(\delta f_e(\varvec{k}, \omega )\) to the Maxwellian electron distribution function

Appendix: Calculation the correction \(\delta f_e(\varvec{k}, \omega )\) to the Maxwellian electron distribution function

To find the correction \(\delta f_e(\varvec{k}, \omega )\) we need to evaluate the integral in Eq. (56):

$$\begin{aligned} \varvec{J}= & {} \int \varvec{E}(\varvec{r},t)\mathrm{e}^{F(t)}dt = \int \varvec{E}(\varvec{r},t) \exp \left\{ (\nu ^{(0)} + i\varvec{k}\varvec{v})t \right. \nonumber \\&\left. + \sum _{n >-[n_k], n \ne 0}^{\infty }\frac{{{{\tilde{\nu }}}}_{ea}(v, n)}{n\omega _0} \sin (n\omega _0 t - \pi n/2)\right\} dt,\nonumber \\ \end{aligned}$$
(100)

which can be represented in the form

$$\begin{aligned} \varvec{J}= & {} \int \varvec{E}(\varvec{r},t)\mathrm{e}^{(\nu ^{(0)} + i\varvec{k}\varvec{v})t} \nonumber \\\times & {} \prod _{n >-[n_k], n \ne 0}^{\infty }\exp \left\{ \frac{{{{\tilde{\nu }}}}_{ea}(v, n)}{n\omega _0} \sin (n\omega _0 t - \pi n/2)\right\} dt.\nonumber \\ \end{aligned}$$
(101)

Using the well-known identity for Bessel functions

$$\begin{aligned} \mathrm{e}^{iz\sin (\varphi )} = \sum _{l = -\infty }^{\infty }J_l(z)\mathrm{e}^{il\varphi } \end{aligned}$$
(102)

and the Fourier transformation (58) for the electric field \(\varvec{E}(\varvec{r},t)\), we obtain that

$$\begin{aligned} \varvec{J}= & {} \prod _{n >-[n_k], n \ne 0}^{\infty }\sum _{l = -\infty }^{\infty }(-1)^l J_l\left( i\frac{{{{\tilde{\nu }}}}_{ea}(v, n)}{n\omega _0}\right) \nonumber \\\times & {} \int _{-\infty }^{\infty } \frac{d\varvec{k}d\omega ^{'}}{(2\pi )^4}\varvec{E}(\varvec{k}, \omega ^{'}) \frac{\mathrm{e}^{(\nu ^{(0)} + i\varvec{k}\varvec{v} - i\omega ^{'} + il\omega _0 S)t + i\varvec{k}\varvec{r}}}{\nu ^{(0)} + i\varvec{k}\varvec{v} - i\omega ^{'} + il\omega _0 S} \,\nonumber \\ \end{aligned}$$
(103)

where \(S = \sum _{n >-[n_k], n \ne 0}^{\infty }n\). It is obviously that \(S \rightarrow +\infty \) and then, from Eq. (103), we have

$$\begin{aligned} \varvec{J}= & {} \prod _{n >-[n_k], n \ne 0}^{\infty }I_0\left( \frac{{{{\tilde{\nu }}}}_{ea}(v, n)}{n\omega _0}\right) \int _{-\infty }^{\infty }d\varvec{k}d\omega ^{'}\varvec{E}(\varvec{k}, \omega ^{'}) \nonumber \\&\times \frac{\mathrm{e}^{(\nu ^{(0)} + i\varvec{k}\varvec{v} - i\omega ^{'})t + i\varvec{k}\varvec{r}}}{\nu ^{(0)} + i\varvec{k}\varvec{v} - i\omega ^{'}} \, \end{aligned}$$
(104)

where we took into account that \(J_0(iz) = I_0(z)\). Multiplying \(\varvec{J}\) in Eq. (104) by \(\exp \{-F(t)\}\) and using the inverse Fourier transformation (59) for the function \(\delta f_e(\varvec{r}, t)\) in Eq. (56), we get the result (60).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rylyuk, V.M. Non-stationary scattering theory and parametric resonance in ultracold Rydberg plasmas subjected to a perturbation by a terahertz acoustic wave. Eur. Phys. J. D 75, 163 (2021). https://doi.org/10.1140/epjd/s10053-021-00152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00152-1

Navigation