Skip to main content
Log in

The evolution of primary stars (30–40 \(\mathrm M_{\odot }\)) in massive close binary systems

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present evolutionary models of primary stars with initial masses in the range of 30 to 40 \(\mathrm M_{\odot }\), evolving in massive binary systems, possible progenitors of gravitational wave sources. The binary systems have an initial mass ratio of 0.9, an initial orbital period of 3 days and an accretion efficiency of 10%. The evolution of the primary stars in those systems is followed from the main sequence to the formation of the carbon-oxygen core. In addition, the evolution of two primaries with the lowest initial masses is calculated to the iron core formation. The masses of the helium and carbon-oxygen cores formed in primary stars are compared with the masses of cores formed in single stars with the same initial masses. The initial mass limit for the black hole formation for this selected type of massive binaries is established between 32 and 34 \(\mathrm M_{\odot }\). All models are calculated with the MESA (Modules for Experiments in Stellar Astrophysics) numerical code.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request and at Zenodo.org.]

References

  1. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese et al., ApJ 818, 22 (2016a)

    Article  Google Scholar 

  2. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese et al., Phys. Rev. Lett. 116, 241103 (2016b)

    Article  ADS  Google Scholar 

  3. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese et al., Phys. Rev. Lett. 116, 061102 (2016c)

    Article  ADS  MathSciNet  Google Scholar 

  4. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese et al., PhysRevX 9, 031040 (2019)

    Google Scholar 

  5. B.P. Abbott, R.Abbott, T.D. Abbott, M.R. Abernathy, F.Acernese, et al., arXiv:2010.14527 (2020)

  6. K. Belczynski, V. Kalogera, F.A. Rasio, R.E. Taam, A. Zezas, T. Bulik, T.J. Maccarone N. Ivanova et al., ApJS, 174, 223 (2008)

  7. M. Cantiello, S.-C. Yoon, N. Langer, M. Livio et al., A&A 465, 29 (2007)

    Article  Google Scholar 

  8. J.P. de Greve, C. de Loore, A&AS 96, 653 (1992)

    ADS  Google Scholar 

  9. C. de Loore, J.P. de Greve, A&AS 94, 453 (1992)

    ADS  Google Scholar 

  10. S.E. de Mink, M. Cantiello, N. Langer, O.R. Pols, I. Brott, S.-C. Yoon, A&A 497, 243 (2009)

    Article  ADS  Google Scholar 

  11. S.E. de Mink, H. Sana, N. Langer, R.G. Izzard, F.R.N. Schneider, ApJ 782, 7 (2014)

    Article  ADS  Google Scholar 

  12. R.G. Detmers, N. Langer, P. Podsiadlowski, R.G. Izzard, A&A 484, 831 (2008)

    Article  ADS  Google Scholar 

  13. J.D.M. Dewi, O.R. Pols, MNRAS 344, 629 (2003)

    Article  ADS  Google Scholar 

  14. J.D.M. Dewi, P. Podsiadlowski, O.R. Pols, MNRAS 363, 71 (2005)

    Article  Google Scholar 

  15. J.J. Eldridge, R.G. Izzard, C.A. Tout, MNRAS 384, 1109 (2008)

    Article  ADS  Google Scholar 

  16. N. Ivanova, K. Belczynski, V. Kalogera, F.A. Rasio, R.E. Taam, ApJ 592, 475 (2003)

    Article  ADS  Google Scholar 

  17. D.C. Kippenhahn, K. Kohl, A. Weigert, Zeitschrift fur Astrophys. 66, 58 (1967)

    ADS  Google Scholar 

  18. M.U. Kruckow, T.M. Tauris, N. Langer, M. Kramer, R.G. Izzard, MNRAS 481, 1908 (2018)

    Article  ADS  Google Scholar 

  19. A. Menon, N. de Mink, S.E. Langer, S. Justham, D. Szécsi, K. Sen, A. de Koter, M. Abdul-Masih, H. Sana, L. Mahy, P. Marchant et al., arXiv:2011.13459, (2020)

  20. T. Nugis, H.J.G.L.M. Lamers, A&A 360, 227 (2000)

    ADS  Google Scholar 

  21. B. Paczynski, Acta Astronomica 17, 355 (1967)

    ADS  Google Scholar 

  22. B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, F. Timmes, ApJS 192, 3 (2011)

    Article  ADS  Google Scholar 

  23. B. Paxton, M. Cantiello, P. Arras, L. Bildsten, E.F. Brown, A. Dotter, C. Mankovich, M.H. Montgomery, D. Stello, F.X. Timmes, R. Townsend, ApJS 208, 4 (2013)

    Article  ADS  Google Scholar 

  24. B. Paxton, P. Marchant, J. Schwab, E.B. Bauer, L. Bildsten, M. Cantiello, L. Dessart, R. Farmer, H. Hu, N. Langer, R.H.D. Townsend, D.M. Townsley, F.X. Timmes, ApJS 220, 15 (2015)

    Article  ADS  Google Scholar 

  25. B. Paxton, J. Schwab, E.B. Bauer, L. Bildsten, S. Blinnikov, P. Duffell, R. Farmer, J.A. Goldberg, P. Marchant, E. Sorokina, A. Thoul, R.H.D. Townsend, F.X. Timmes, ApJS 234, 34 (2018)

    Article  ADS  Google Scholar 

  26. J. Petrovic, N. Langer, K.A. van der Hucht, A&A 435, 1013 (2005a)

    Article  ADS  Google Scholar 

  27. J. Petrovic, N. Langer, S.-C. Yoon, A. Heger, A&A 435, 247 (2005b)

    Article  ADS  Google Scholar 

  28. P. Podsiadlowski, N. Langer, A.J.T. Poelarends, ApJ 612, 1044 (2004)

    Article  ADS  Google Scholar 

  29. O.R. Pols, A&A 290, 119 (1994)

    ADS  Google Scholar 

  30. D. Reimers. Problems in Stellar Atmospheres and Envelopes, Springer, page 225., (1975)

  31. H. Ritter, A&A 202, 93 (1988)

    ADS  Google Scholar 

  32. F.R.N. Schneider, P. Podsiadlowski, B. Muller et al., A&A 645, 5 (2021)

    Article  ADS  Google Scholar 

  33. G.E. Soberman, E.S. Phinney, E.P.J. van den Heuvel, A&A 327, 620 (1997)

    ADS  Google Scholar 

  34. T.M. Tauris, N. Langer, P. Podsiadlowski, MNRAS 451, 2123 (2015)

  35. T.M. Tauris, M. Kramer, P.C.C. Freire, N. Wex, H.T. Janka, N. Langer, P. Podsiadlowski, E. Bozzo, S. Chaty, M.U. Kruckow, E.P.J. van den Heuvel, J. Antoniadis, R.P. Breton, D.J. Champion, ApJ 846, 170 (2017)

  36. R.K. Ulrich, H.I. Burger et al., ApJ 206, 509 (1976)

    Article  ADS  Google Scholar 

  37. E.P.J. van den Heuvel, J. Heise, Nat. Phys. Sci. 239, 67 (1972)

    Article  ADS  Google Scholar 

  38. D. Vanbeveren, A&A 105, 260 (1982)

    ADS  Google Scholar 

  39. D. Vanbeveren, J.P. de Greve, C. de Loore, E.L. van Dessel, A&A 73, 19 (1979)

    ADS  Google Scholar 

  40. F. Verbunt, E.S. Phinney, A&A 296, 709 (1995)

    ADS  Google Scholar 

  41. J.S. Vink, A. de Koter, H.J.G.L.M. Lamers, A&A 369, 574 (2001)

    Article  ADS  Google Scholar 

  42. S. Wellstein, N. Langer, A&A 350, 148 (1999)

    ADS  Google Scholar 

  43. S. Wellstein, N. Langer, H. Braun, A&A 369, 939 (2001)

    Article  ADS  Google Scholar 

  44. J.-P. Zahn, A&A 57, 383 (1977)

    ADS  Google Scholar 

Download references

Acknowledgements

During the work on this paper the authors were financially supported by the Ministry of Education and Science of the Republic of Serbia through the contract 451-03-9/2021-14/200002.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jelena Petrovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovic, J. The evolution of primary stars (30–40 \(\mathrm M_{\odot }\)) in massive close binary systems. Eur. Phys. J. D 75, 162 (2021). https://doi.org/10.1140/epjd/s10053-021-00166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00166-9

Navigation