Skip to main content

Advertisement

Log in

Effect of oxygen interstitials on structural stability in refractory metals (V, Mo, W) from DFT calculations

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Interstitial atoms have a significant influence on the structural, thermal and electronic properties and processes in refractory metals and their alloys. In the present study, the effect of oxygen impurity on the structure of pure V, Mo and W has been studied using Density Functional Theory (DFT) calculations. Single oxygen atom has been incorporated at the tetrahedral and octahedral sites to study the structural stability. In case of V and Mo, octahedral sites are energetically favorable, whereas for W, it is the tetrahedral site; this can be explained from the calculated values of formation energies for different V-O, Mo-O and W-O systems. A bcc to bct transition has been reported in all the systems with the introduction of interstitial oxygen atoms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The supporting data of this study are available from the corresponding author upon reasonable request.]

References

  1. R. Higler, S. Joris, J. Tauber, Anomalous dynamics of interstitial dopants in soft crystals. PNAS (2016). https://doi.org/10.1073/pnas.1609595113

    Article  Google Scholar 

  2. D.R. Macfarlane, J. Huang, M. Forsyth, Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402, 792–794 (1999)

    Article  ADS  Google Scholar 

  3. S.K. Nayak, C.J. Hung, V. Sharma, S. Pamir Alpay, A.M. Dongare, W.J. Brindley, R.J. Hebert, Insight into point defects and impurities in titanium from first principles. Comput Mater 4(11), 1–10 (2018)

    Google Scholar 

  4. J. Stráský M. Janeček P. Harcuba D. Preisler M. Landa, Biocompatible beta-Ti alloys with enhanced strength due to increased oxygen content, Titanium in Medical and Dental Applications, The Design and Manufacture of Medical Devices, Woodhead Publishing Series in Biomaterials (2018) pp 371-392

  5. C. Ghosh, A. Singh, J. Basu, R. Divakar, E. Mohandas, Microstructural and microchemical studies of phase stability in V-O solid solution. J. Mater. Charact. 124, 129–135 (2017). https://doi.org/10.1016/j.matchar.2016.12.022

    Article  Google Scholar 

  6. P. Erhart, A. Klein, and K. Albe, First-principles study of the structure and stability of oxygen defects in zinc oxide, Phys. Rev. B 72 (2005) 085213 1-7. https://doi.org/10.1103/PhysRevB.72.085213.s

  7. S. Yamaoka, K. Kobayashi, K. Sueoka, J. Vanhellemont, Density functional theory study of dopant effect on formation energy of intrinsic point defects in germanium crystals. J. Cryst. Growth 474, 104–109 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.072

    Article  ADS  Google Scholar 

  8. J. Qin, Z. Wang, D. Wang, F. Wang, X. Yan, Y. Zhong, C. Hu, H. Zhou, First-principle investigation of hydrogen solubility and diffusivity in transition metal-doped vanadium membranes and their mechanical properties. J. Alloys Compd. 805, 747–756 (2019). https://doi.org/10.1016/j.jallcom.2019.07.063

    Article  Google Scholar 

  9. R. Joy, Z. Zhao, H.K. Xu, X. Pan, N. Liao, H. Zhou, DFT investigation of gas sensing characteristics of Au-doped vanadium dioxide. Phys. Lett. A 384, 126823 (2020). https://doi.org/10.1016/j.physleta.2020.12682

    Article  Google Scholar 

  10. E. Mete, O. Gülseren, Ş. Ellialtıoğlu, DFT study of noble metal impurities on TiO\(_{\rm 2}\) (110). Eur. Phys. J. B 85, 1–7 (2012). https://doi.org/10.1140/epjb/e2012-21039-x

    Article  Google Scholar 

  11. N. Zhang, Y. Zhang, Y. Yang, P. Zhang, Z. Hu, G. Changchun, Trapping of helium atom by vacancy in tungsten: a density functional theory study. Eur. Phys. J. B 90, 101 (2017). https://doi.org/10.1140/epjb/e2017-80056-1

    Article  ADS  Google Scholar 

  12. W.J. Bowman, J. Yang, B. Yildiz, The role of doping and microstructure on hydrogen solubility in monoclinic ZrO\(_{\rm 2}\): experimental validations of simulated defect chemistry. Acta Mater. 195, 172–183 (2020). https://doi.org/10.1016/j.actamat.2020.04.020

    Article  ADS  Google Scholar 

  13. Y. Jiang, B. Himmetoglu, M. Cococcioni, J.-P. Wang, DFT calculation and experimental investigation of Mn doping effect in Fe\(_{16}\)N\(_{2}\). AIP Adv. 6, (2016). https://doi.org/10.1063/1.4943059

  14. S.R. Nishitani, H. Kawabe, M. Aoki, First-principles calculations on bcc-hcp transition of titanium. Mater. Sci. Eng. A 312, 77–83 (2001)

    Article  Google Scholar 

  15. R. Li, P. Zhang, X. Li, C. Zhang, J. Zhao, First- principles study of the behavior of O, N and C impurities in vanadium solids. J. Nucl. Mater. 435, 71–76 (2013)

    Article  ADS  Google Scholar 

  16. A. Jovanovic, A.S. Dobrota, L.D. Rafailovic, S.V. Mentus, I.A. Pasti, B. Johansson, N.V. Skorodumova, Structural and electronic properties of V\(_{2}\)O\(_{5}\) and their tuning by doping with 3D elements—modelling with DFT\(+\)U method and dispersion correction. Phys. Chem. Chem. Phys. 20, 13934–13943 (2018)

    Article  Google Scholar 

  17. S. Tosoni, C. Di Valentin, G. Pacchioni, Effect of alkali metals interstitial doping on structural and electronic properties of WO\(_{\rm 3}\). J. Phys. Chem. C 118, 3000–3006 (2014)

    Article  Google Scholar 

  18. L.-J. Gui, Y.-L. Liu, First-principles studying the properties of oxygen in vanadium: Thermodynamics and tensile/shear behavior. Comput. Condens. Matter 7, 7–13 (2016)

    Article  Google Scholar 

  19. Q. Zhou, Y. Liu, W. Ju, Q. Zhang, J. Li, Exploring the effect of dopant (Si, P, S, Ge, Se, and Sb) in arsenene: a DFT study. Phys. Lett. A 384, 126146 (2020)

    Article  Google Scholar 

  20. A. Alkhamees, Y.-L. Liu, H.-B. Zhou, S. Jin, Y. Zhang, G.-H. Lu, First-principles investigation on dissolution and diffusion of oxygen in tungsten. J. Nucl. Mater. 393, 508–512 (2009)

    Article  ADS  Google Scholar 

  21. X.-S. Kong, Y.-W. You, Q.F. Fang, C.S. Liu, J.-L. Chen, G.-N. Luo, B.C. Pan, Z. Wang, The role of impurity oxygen in hydrogen bubble nucleation in tungsten. J. Nucl. Mater. 433, 357–363 (2013)

    Article  ADS  Google Scholar 

  22. Q. Zhao, Z. Zhang, Y. Li, X. Ouyang, First-principles study on various point defects formed by hydrogen and helium atoms in Tungsten. Sci. Technol. Nucl. Install. 2017, 1–9 (2017)

    Article  Google Scholar 

  23. M. Satou, K. Abe, H. Kayano, High-temperature deformation of modified V-Ti-Cr-Si type alloys. J. Nucl. Mater 179–181, 757–761 (1991)

    Article  ADS  Google Scholar 

  24. A.F. Rowcliffe, S.J. Zinkle, D.T. Hoelzer, Effect of strain rate on the tensile properties of unirradiated and irradiated V-4Cr-4Ti. J. Nucl. Mater 283–287, 508–512 (2000)

    Article  ADS  Google Scholar 

  25. S. Antusch, J. Reiser, J. Hoffmann, A. Onea, Refractory materials for energy applications. Energy Technol 5(7), 1064–1070 (2017). https://doi.org/10.1002/ente.201600571

    Article  Google Scholar 

  26. http://www.quantumespresso.org/pseudopotentials

  27. https://nisihara.wixsite.com/burai

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  29. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). https://doi.org/10.1103/PhysRevB.41.7892

    Article  ADS  Google Scholar 

  30. T. Fischer, J. Almlof, General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992). https://doi.org/10.1021/j100203a036

    Article  Google Scholar 

  31. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  Google Scholar 

  32. C. Ghosh, V. Sharma, J. Basu, R. Divakar, E. Mohandas, Structure imaging and vanadium substitution in cubic TiCr\(_{\rm 2}\) Laves phase. Philos. Mag. 95(22), 2403–2426 (2015). https://doi.org/10.1080/14786435.2015.1061218

    Article  ADS  Google Scholar 

  33. Y.-R. Luo, Handbook of bond dissociation energies in organic compounds (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  34. S. Mukherjee, S. Shukla, C. Ghosh, N.K. Mukhopadhyay, J. Basu, Phase stability and microstructural evolution in vanadium-titanium alloys with oxygen dissolution and varying titanium-content. Microsc Microanal (2020). https://doi.org/10.1017/S1431927620020395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SG carried out the DFT Modeling and calculations, prepared the manuscript. CG conceptualized the study and reviewed the manuscript.

Corresponding author

Correspondence to Sutapa Ghosh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 264 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Ghosh, C. Effect of oxygen interstitials on structural stability in refractory metals (V, Mo, W) from DFT calculations. Eur. Phys. J. B 94, 114 (2021). https://doi.org/10.1140/epjb/s10051-021-00110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00110-1

Navigation