Skip to main content

Advertisement

Log in

Complexities of Capturing Light for Enhancing Thermal Catalysis

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The applicability of heterogeneous catalysis is often marred by a requirement for large energy inputs to achieve optimal reaction temperatures. Removing the need for thermal input by utilising photocatalysts offers an alternate pathway towards achieving sufficient energy input, but it is severely limited by the current low efficiencies of solar energy conversion. Recent findings have suggested that utilising solar energy to supplement heterogeneous reaction systems can enhance performance, although integrating light within a thermal-catalytic system is not necessarily straightforward nor beneficial. Herein, we offer a perspective on the complexities of using light when promoting three systems of heterogeneous catalysis; (i) enhancing catalyst activity via a plasmonic effect, (ii) promoting reaction systems based on semiconducting catalyst materials, and (iii) activating intermediary species.

Graphic Abstract

Engaging light to boost the activity and/or selectivity of a heterogeneous catalytic reaction is not necessarily straightforward whereby a raft of complexities can be introduced. The complexities have the potential to negate any positive effects imposed by the light and, in some cases, can be to the detriment of catalyst performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Article  CAS  Google Scholar 

  2. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921. https://doi.org/10.1038/nmat3151

    Article  CAS  PubMed  Google Scholar 

  3. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680. https://doi.org/10.1021/ja076503n

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11:1111–1116. https://doi.org/10.1021/nl104005n

    Article  CAS  PubMed  Google Scholar 

  5. Hou W, Hung WH, Pavaskar P, Goeppert A, Aykol M, Cronin SB (2011) Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal 1:929–936. https://doi.org/10.1021/cs2001434

    Article  CAS  Google Scholar 

  6. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO 2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315. https://doi.org/10.1021/ja2120647

    Article  CAS  PubMed  Google Scholar 

  7. Xie B, Lovell E, Tan TH, Jantarang S, Yu M, Scott J, Amal R (2021) Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J Energy Chem 59:108–125. https://doi.org/10.1016/j.jechem.2020.11.005

    Article  Google Scholar 

  8. Zhang Q, Yang Z, Chen X, Ning S, Qi Y, Liu L, Ye J (2020) Plasmon-Enhanced CO selective oxidation in H2 over Pt nanoclusters supported on metallic molybdenum dioxide nanocrystals. Adv Mater Interfaces 7:1–8. https://doi.org/10.1002/admi.202001657

    Article  CAS  Google Scholar 

  9. Gellé A, Jin T, De La Garza L, Price GD, Besteiro LV, Moores A (2020) Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem Rev 120:986–1041. https://doi.org/10.1021/acs.chemrev.9b00187

    Article  CAS  PubMed  Google Scholar 

  10. Ji W, Shen T, Kong J, Rui Z, Tong Y (2018) Synergistic performance between visible-light photocatalysis and thermocatalysis for VOCs oxidation over robust Ag/F-codoped SrTiO3. Ind Eng Chem Res 57:12766–12773. https://doi.org/10.1021/acs.iecr.8b02873

    Article  CAS  Google Scholar 

  11. De La Garza LC, Brodusch N, Gauvin R, Moores A (2021) Plasmon-enhanced hydrogenation of 1-dodecene and toluene using ruthenium-coated gold nanoparticles. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.0c03077

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dhiman M (2020) Plasmonic nanocatalysis for solar energy harvesting and sustainable chemistry. J Mater Chem A 8:10074–10095. https://doi.org/10.1039/d0ta03114c

    Article  CAS  Google Scholar 

  13. Tan TH, Xie B, Ng YH, Abdullah SFB, Tang HYM, Bedford N, Taylor RA, Aguey-Zinsou KF, Amal R, Scott J (2020) Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat Catal 3:1034–1043. https://doi.org/10.1038/s41929-020-00544-3

    Article  CAS  Google Scholar 

  14. Xie B, Wong RJ, Tan TH, Higham M, Gibson EK, Decarolis D, Callison J, Aguey-Zinsou KF, Bowker M, Catlow CRA, Scott J, Amal R (2020) Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nat Commun 11:1615. https://doi.org/10.1038/s41467-020-15445-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manchon D, Lermé J, Zhang T, Mosset A, Jamois C, Bonnet C, Rye JM, Belarouci A, Broyer M, Pellarin M, Cottancin E (2015) Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas. Nanoscale 7:1181–1192. https://doi.org/10.1039/c4nr05383d

    Article  CAS  PubMed  Google Scholar 

  16. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. https://doi.org/10.1002/adma.200400271

    Article  CAS  Google Scholar 

  17. Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy JR, Wei WD (2018) Surface-plasmon-driven hot electron photochemistry. Chem Rev 118:2927–2954. https://doi.org/10.1021/acs.chemrev.7b00430

    Article  CAS  PubMed  Google Scholar 

  18. Adleman JR, Boyd DA, Goodwin DG, Psaltis D (2009) Heterogenous catalysis mediated by plasmon heating. Nano Lett 9:4417–4423. https://doi.org/10.1021/nl902711n

    Article  CAS  PubMed  Google Scholar 

  19. Stanley JN, García-García I, Perfrement T, Lovell EC, Schmidt TW, Scott J, Amal R (2019) Plasmonic effects on CO2 reduction over bimetallic Ni-Au catalysts. Chem Eng Sci 194:94–104. https://doi.org/10.1016/j.ces.2018.04.003

    Article  CAS  Google Scholar 

  20. García-García I, Lovell EC, Wong RJ, Barrio VL, Scott J, Cambra JF, Amal R (2020) Silver-based plasmonic catalysts for carbon dioxide reduction. ACS Sustain Chem Eng 8:1879–1887. https://doi.org/10.1021/acssuschemeng.9b06146

    Article  CAS  Google Scholar 

  21. Zheng J, Wang C, Chu W, Zhou Y, Köhler K (2016) CO2 Methanation over supported Ru/Al2O3 catalysts: mechanistic studies by in situ infrared spectroscopy. ChemistrySelect 1:3197

    Article  CAS  Google Scholar 

  22. Liu H, Meng X, Dao TD, Zhang H, Li P, Chang K, Wang T, Li M, Nagao T, Ye J (2015) Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew Chemie Int Ed 54:11545–11549. https://doi.org/10.1002/anie.201504933

    Article  CAS  Google Scholar 

  23. Song H, Meng X, Dao TD, Zhou W, Liu H, Shi L, Zhang H, Nagao T, Kako T, Ye J (2018) Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles. ACS Appl Mater Interfaces 10:408–416. https://doi.org/10.1021/acsami.7b13043

    Article  CAS  PubMed  Google Scholar 

  24. Lovell E, Horlyck J, Scott J, Amal R (2017) Flame spray pyrolysis-designed silica/ceria-zirconia supports for the carbon dioxide reforming of methane. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2017.08.002

    Article  Google Scholar 

  25. Fan C, Zhu YA, Yang ML, Sui ZJ, Zhou XG, Chen D (2015) Density functional theory-assisted microkinetic analysis of methane dry reforming on Ni catalyst. Ind Eng Chem Res 54:5901–5913. https://doi.org/10.1021/acs.iecr.5b00563

    Article  CAS  Google Scholar 

  26. Maestri M, Vlachos DG, Beretta A, Groppi G, Tronconi E (2008) Steam and dry reforming of methane on Rh : microkinetic analysis and hierarchy of kinetic models. J Catal 259:211–222. https://doi.org/10.1016/j.jcat.2008.08.008

    Article  CAS  Google Scholar 

  27. Kennedy JC, Datye AK (1998) Photothermal heterogeneous oxidation of ethanol over Pt/TiO2. J Catal 179:375–389. https://doi.org/10.1006/jcat.1998.2242

    Article  CAS  Google Scholar 

  28. Sobolev VI, Simakova OA, Koltunov KY (2011) Generation of reactive oxygen species on Au/TiO2 after treatment with hydrogen: testing the link to ethanol low-temperature oxidation. ChemCatChem 3:1422–1425. https://doi.org/10.1002/cctc.201100133

    Article  CAS  Google Scholar 

  29. Takei T, Iguchi N, Haruta M (2011) Support effect in the gas phase oxidation of ethanol over nanoparticulate gold catalysts. New J Chem 35:2227–2233. https://doi.org/10.1039/c1nj20297a

    Article  CAS  Google Scholar 

  30. Holz MC, Tölle K, Muhler M (2014) Gas-phase oxidation of ethanol over Au/TiO2catalysts to probe metal-support interactions. Catal Sci Technol 4:3495–3504. https://doi.org/10.1039/c4cy00493k

    Article  CAS  Google Scholar 

  31. Tan TH, Scott J, Ng YH, Taylor RA, Aguey-Zinsou KF, Amal R (2016) Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold. ACS Catal 6:1870–1879. https://doi.org/10.1021/acscatal.5b02785

    Article  CAS  Google Scholar 

  32. Tan TH, Scott J, Ng YH, Taylor RA, Aguey-Zinsou KF, Amal R (2016) C-C cleavage by Au/TiO2 during ethanol oxidation: understanding bandgap photoexcitation and plasmonically mediated charge transfer via quantitative in situ DRIFTS. ACS Catal 6:8021–8029. https://doi.org/10.1021/acscatal.6b01833

    Article  CAS  Google Scholar 

  33. Tan TH, Scott JA, Ng YH, Taylor RA, Aguey-Zinsou KF, Amal R (2017) Plasmon enhanced selective electronic pathways in TiO2 supported atomically ordered bimetallic Au-Cu alloys. J Catal 352:638–648. https://doi.org/10.1016/j.jcat.2017.06.034

    Article  CAS  Google Scholar 

  34. Tan X, Tahini HA, Smith SC (2019) Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide. Mater Horizons 6:1409–1415. https://doi.org/10.1039/c9mh00066f

    Article  CAS  Google Scholar 

  35. Zhang H, Itoi T, Konishi T, Izumi Y (2019) Dual photocatalytic roles of light: charge separation at the band gap and heat via localized surface plasmon resonance to convert CO2 into CO over silver-zirconium oxide. J Am Chem Soc 141:6292–6301. https://doi.org/10.1021/jacs.8b13894

    Article  CAS  PubMed  Google Scholar 

  36. Wu D, Deng K, Hu B, Lu Q, Liu G, Hong X (2019) Plasmon-assisted photothermal catalysis of low-pressure CO 2 hydrogenation to methanol over Pd/ZnO catalyst. ChemCatChem 11:1598–1601. https://doi.org/10.1002/cctc.201802081

    Article  CAS  Google Scholar 

  37. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355:1296–1299. https://doi.org/10.1126/science.aan8074

    Article  CAS  PubMed  Google Scholar 

  38. Ullah S, Lovell EC, Wong RJ, Tan TH, Scott J, Amal R (2020) Light-enhanced CO2 reduction to CH4 using nonprecious transition-metal catalysts. ACS Sustain Chem Eng 8:5056–5066. https://doi.org/10.1021/acssuschemeng.9b06823

    Article  CAS  Google Scholar 

  39. Kim Y, Smith JG, Jain PK (2018) Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles. Nat Chem 10:763–769. https://doi.org/10.1038/s41557-018-0054-3

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Swearer DF, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter EA, Nordlander P, Halas NJ (2018) Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362:69–72. https://doi.org/10.1126/science.aat6967

    Article  CAS  PubMed  Google Scholar 

  41. Mateo D, Cerrillo JL, Durini S, Gascon J (2021) Fundamentals and applications of photo-thermal catalysis. Chem Soc Rev 50:2173–2210. https://doi.org/10.1039/d0cs00357c

    Article  CAS  PubMed  Google Scholar 

  42. Escobedo S, de Lasa H (2020) Photocatalysis for air treatment processes: current technologies and future applications for the removal of organic pollutants and viruses. Catalysts 10:966. https://doi.org/10.3390/catal10090966

    Article  CAS  Google Scholar 

  43. Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246. https://doi.org/10.1016/j.atmosenv.2009.01.034

    Article  CAS  Google Scholar 

  44. Kandy MM, Kandy AR, Sankaralingam M (2021) Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide. Sustain Energy Fuels 5:12–33. https://doi.org/10.1039/d0se01282c

    Article  CAS  Google Scholar 

  45. Boyjoo Y, Sun H, Liu J, Pareek VK, Wang S (2017) A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J 310:537–559. https://doi.org/10.1016/j.cej.2016.06.090

    Article  CAS  Google Scholar 

  46. McCullagh C, Skillen N, Adams M, Robertson PKJ (2011) Photocatalytic reactors for environmental remediation: a review. J Chem Technol Biotechnol 86:1002–1017. https://doi.org/10.1002/jctb.2650

    Article  CAS  Google Scholar 

  47. Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38:645–654. https://doi.org/10.1016/S0360-1323(02)00212-3

    Article  Google Scholar 

  48. Denny F, McCaffrey P, Scott J, Peng GD, Amal R (2011) A mesoporous SiO2 intermediate layer for improving light propagation in a bundled tube photoreactor. Chem Eng Sci 66:3641–3647. https://doi.org/10.1016/j.ces.2011.04.037

    Article  CAS  Google Scholar 

  49. Denny F, Permana E, Scott J, Wang J, Pui DYH, Amal R (2010) Integrated photocatalytic filtration array for indoor air quality control. Environ Sci Technol 44:5558–5563. https://doi.org/10.1021/es100421u

    Article  CAS  PubMed  Google Scholar 

  50. Kho ET, Tan TH, Lovell E, Wong RJ, Scott J, Amal R (2017) A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ 2:204–217. https://doi.org/10.1016/j.gee.2017.06.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Scott.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horlyck, J., Lovell, E. & Scott, J. Complexities of Capturing Light for Enhancing Thermal Catalysis. Catal Lett 152, 619–628 (2022). https://doi.org/10.1007/s10562-021-03669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03669-7

Keywords

Navigation