Skip to main content

Advertisement

Log in

A New Semi-automated Algorithm for Volumetric Segmentation of the Left Ventricle in Temporal 3D Echocardiography Sequences

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Echocardiography is commonly used as a non-invasive imaging tool in clinical practice for the assessment of cardiac function. However, delineation of the left ventricle is challenging due to the inherent properties of ultrasound imaging, such as the presence of speckle noise and the low signal-to-noise ratio.

Methods

We propose a semi-automated segmentation algorithm for the delineation of the left ventricle in temporal 3D echocardiography sequences. The method requires minimal user interaction and relies on a diffeomorphic registration approach. Advantages of the method include no dependence on prior geometrical information, training data, or registration from an atlas.

Results

The method was evaluated using three-dimensional ultrasound scan sequences from 18 patients from the Mazankowski Alberta Heart Institute, Edmonton, Canada, and compared to manual delineations provided by an expert cardiologist and four other registration algorithms. The segmentation approach yielded the following results over the cardiac cycle: a mean absolute difference of 1.01 (0.21) mm, a Hausdorff distance of 4.41 (1.43) mm, and a Dice overlap score of 0.93 (0.02).

Conclusion

The method performed well compared to the four other registration algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data used for this manuscript is not available.

Code availability

Custom code was used for this manuscript and is not available.

References

  1. Altman, D. G., and J. M. Bland. Measurement in medicine: the analysis of method comparison studies. J. Royal Stat. Soc., 32(3):307–317, 1983.

    Google Scholar 

  2. Barbosa, D., T. Dietenbeck, J. Schaerer, J. D’hooge, D. Friboulet, and O. Bernard. B-spline explicit active surfaces: an efficient framework for real-time 3D region-based segmentation. IEEE Trans. Image Process.. 1(1):241–251, 2012.

    Article  Google Scholar 

  3. Barbosa, D., D. Friboule, J. D’hooge and O. Bernard. Fast tracking of the left ventricle using global anatomical affine optical flow and local recursive block matching. In: Proceedings of the MICCAI Challenge on Endocardial Three-dimensional Ultrasound Segmentation-CETUS, pp. 17–24, 2014.

  4. Bernard, O., J. G. Bosch, B. Heyde, M. Alessandrini, D. Barbosa, S. Camarasu-Pop, F. Cervenansky, S. Valette, O. Mirea, M. Bernier, and P. M. Jodoin. Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography.IEEE Trans. Image Process., 35(4):967–977, 2016.

    Article  Google Scholar 

  5. Bradski, G., A. Kaehler, Learning OpenCV: computer vision with the OpenCV library. O’Reilly Media, Inc., 2008.

  6. Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia. Meshlab: an open-source mesh processing tool. In: Eurographics Italian chapter conference, pp. 129–136, 2008.

  7. Dice, L. R., Measures of the amount of ecologic association between species. Ecology, 26(3):297–302, 1945.

    Article  Google Scholar 

  8. Dikici, E. and F. Orderud. Graph-cut based edge detection for kalman filter based left ventricle tracking in 3d+ t echocardiography. Comput. Cardiol. IEEE, pp. 205–208, 2010.

  9. Dong, S., G. Luo, K. Wang, S. Cao, A. Mercado, O. Shmuilovich, H. Zhang, S. Li. VoxelAtlasGAN: 3D left ventricle segmentation on echocardiography with atlas guided generation and voxel-to-voxel discrimination In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 622–629, 2018.

  10. Dong, S., G. Luo, C. Tam, W. Wang, K. Wang, S. Cao, B. Chen, H. Zhang, S. Li. Deep atlas network for efficient 3d left ventricle segmentation on echocardiography Medical Image Anal., 61(1):101638, 2020.

  11. Doo, D. and M. Sabin. Behaviour of recursive division surfaces near extraordinary points. Comput.-Aided Des., 10(6):356–360, 1978.

    Article  Google Scholar 

  12. Farnebäck, G. Two-frame motion estimation based on polynomial expansion. Scand. Conf. Image Anal., pp. 363–370, 2003.

  13. Gottschalk, S., M. C. Lin, and D. Manocha. OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, pp. 171–180, 1996.

  14. Huang, X., D. P. Dione, C. B. Compas, X. Papademetris, B.A. Lin, A.J. Sinusas, and J.S. Duncan. A dynamical appearance model based on multiscale sparse representation: Segmentation of the left ventricle from 4D echocardiography. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 58–65, 2012.

  15. Huang, X., D. P. Dione, C. B. Compas, X. Papademetris, B. A. Lin, A. Bregasi, A.J. Sinusas, L.H. Staib, and J. S. Duncan. Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. Med. Image Anal., pp. 253–271, 2014.

  16. Huttenlocher, D. P., G. A. Klanderman, and Rucklidge, W. J. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9):850–863, 1993.

    Article  Google Scholar 

  17. Kleijn, S. A, W. P. Brouwer, M. F. Aly, K. Rüssel, G. J. de Roest, A. M. Beek, A. C. van Rossum, and O. Kamp. Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur. Heart J. 3(10):834–839, 2012.

    Article  Google Scholar 

  18. Krishnaswamy, D., A. R. Hareendranathan, T. Suwatanaviroj, H. Becher, M. Noga and K. Punithakumar. A semi-automated method for measurement of left ventricular volumes in 3D echocardiography. IEEE Access, pp. 16336–16344, 2018.

  19. Krishnaswamy, D., A. R. Hareendranathan, T. Suwatanaviroj, P. Boulanger, H. Becher, M. Noga, and K. Punithakumar. A novel 4D semi-automated algorithm for volumetric segmentation in echocardiography. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1119–1122, 2018.

  20. Lang, R. M., L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong, L. Ernande, F. A. Flachskampf, E. Foster, S. A. Goldstein, T. Kuznetsova, and P. Lancellotti. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the european association of cardiovascular imaging. Eur. Heart J. Cardiovascu. Imaging, 16(3):233–71, 2015.

    Article  Google Scholar 

  21. Lang, R. M., L. P. Badano, W. Tsang, D. H. Adams, E. Agricola, T. Buck, F. F. Faletra, A. Franke, J. Hung, L. P. de Isla, and O. Kamp. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur. Heart J. Cardiovascu. Imaging, 13(1):1–46, 2012

    Article  Google Scholar 

  22. Lang, R. M., M. Bierig, R. B. Devereux, F. A. Flachskampf, E. Foster, P. A. Pellikka, M. H. Picard, M. J. Roman, J. Seward, J. Shanewise, and S. D. Solomon. Recommendations for chamber quantification: a report from the american society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the european association of echocardiography, a branch of the european society of cardiology. J. Am. Soc. Echocardiogr., 18(12):1440–1463, 2005.

    Article  Google Scholar 

  23. Leung, K. E. and J. G. Bosch Automated border detection in three-dimensional echocardiography: principles and promises. Eur. J. Echocardiogr, 1(2):97–108, 2010.

    Article  Google Scholar 

  24. Leung, K. E., M. G. Danilouchkine, M. van Stralen, N. de Jong, A. F. van der Steen, and J. G. Bosch. Left ventricular border tracking using cardiac motion models and optical flow. Ultrasound Med. Biol., 37(4):605–616, 2011

    Article  Google Scholar 

  25. Leung, K.E., M. van Stralen, G. van Burken, N. de Jong, and J. G. Bosch. Automatic active appearance model segmentation of 3D echocardiograms. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2010; pp. 320–323.

  26. Lucas, B. D., and T. Kanade. An iterative image registration technique with an application to stereo vision. In: Proceedings DARPA Image Understanding Workshop, pp. 121–30, 1981.

  27. Mor-Avi, V., C. Jenkins, H. P. Kühl, H. J. Nesser, T. Marwick, A. Franke, C. Ebner, B. H. Freed, R. Steringer-Mascherbauer, H. Pollard, and L. Weinert. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC, 1(4):413–423, 2009.

    Google Scholar 

  28. Nikitin, N. P., C. Constantin, P. H. Loh, J. Ghosh, E. I. Lukaschuk, A. Bennett, S. Hurren, F. Alamgir, A. L. Clark, and J. G. Cleland. New generation 3-dimensional echocardiography for left ventricular volumetric and functional measurements: comparison with cardiac magnetic resonance. Eur. J. Echocardiogr., 7(5):365–372, 2006.

  29. Oktay, O., E. Ferrante, K. Kamnitsas, M. Heinrich, W. Bai, J. Caballero, S. A. Cook, A. De Marvao, T. Dawes, D. P. O’Regan, B. Kainz. Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation IEEE Trans. Medi. Imaging, 37(2):384–395, 2017.

  30. Orderud, F. and S. I. Rabben. Real-time 3D segmentation of the left ventricle using deformable subdivision surfaces. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8, 2008.

  31. Orderud F. A framework for real-time left ventricular tracking in 3D+ t echocardiography, using nonlinear deformable contours and kalman filter based tracking. Comput. Cardiolog. EEE, pp.125–128, 2006.

  32. Papachristidis, A., Galli, E., Geleijnse ML, Heyde B, Alessandrini M, Barbosa D, Papitsas M, Pagnano G, Theodoropoulos KC, Zidros S, and Donal E. Standardized delineation of endocardial boundaries in three-dimensional left ventricular echocardiograms. Journal of The American Society of Echocardiography, 2017; 30(11):1059–69.

  33. Pedrosa, J., S. Queirós, O. Bernard, J. Engvall, T. Edvardsen, E. Nagel, and J. D’hooge. Fast and fully automatic left ventricular segmentation and tracking in echocardiography using shape-based b-spline explicit active surfaces. IEEE Tans. Med. Imaging, 36(11):2287–96, 2017.

  34. Punithakumar, K., P. Boulanger, and N. Noga. A GPU-accelerated deformable image registration algorithm with applications to right ventricular segmentation. IEEE Access, 5:20374–20382, 2017.

    Article  Google Scholar 

  35. Punithakumar, K., A. R. Hareendranathan, A. McNulty, M. Biamonte, A. He, M. Noga, P. Boulanger, and H. Becher. Multiview 3-D echocardiography fusion with breath-hold position tracking using an optical tracking system. Ultrasound Med. Biol., 42(8):1998–2009, 2016.

    Article  Google Scholar 

  36. Pérez, J. S., E. Meinhardt-Llopis, G. Facciolo. TV-L1 optical flow estimation. Image Processing On Line, pp. 137–50, 2013.

  37. Queirós, S., J. L. Vilaça, P. Morais, J. C. Fonseca, J. D’hooge, and D. Barbosa. Fast left ventricle tracking using localized anatomical affine optical flow. Int J. Numer Methods Biomed. Eng., 33(11):e2871, 2017.

    Article  Google Scholar 

  38. Schroeder, W. and K. Martin. The Visualization Toolkit (4th ed.). Kitware; 2006.

  39. Smistad, E. and F. Lindseth. Real-time tracking of the left ventricle in 3D ultrasound using Kalman filter and mean value coordinates. Med. Image Segment. Improv. Surg. Navigat., pp. 189–199, 2014.

  40. Van der Walt, S., J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu. Scikit-image: image processing in Python. PeerJ, 2:e453, 2014

    Article  Google Scholar 

  41. van Stralen, M., A. Haak, K. E. Leung, G. van Burken, C. Bos, and J. G. Bosch. Full-cycle left ventricular segmentation and tracking in 3d echocardiography using active appearance models .In: IEEE International Ultrasonics Symposium (IUS), pp. 1–4, 2015.

  42. Wedel, A., T. Pock, C. Zach, H. Bischof, D. Cremers. An improved algorithm for tv-l1 optical flow. InL Statistical and Geometrical Approaches to Visual Motion Analysis, pp. 23–45, 2009.

  43. Yodwut, C., L. Weinert, B. Klas, R. M. Lang, and V. Mor-Avi. Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. J. Am. Soc. Echocardiogr., 25(9):978–985, 2012.

    Article  Google Scholar 

  44. Yoo, T. S., M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, R. Whitaker. Engineering and algorithm design for an image processing API: a technical report on ITK-the insight toolkit. Stud. Health Technol. Inform., pp. 586–592, 2002.

  45. Zach, C., T. Pock, H. Bischof. A duality based approach for realtime tv-l 1 optical flow. In: Joint Pattern Recognition Symposium, pp. 214–223, 2007.

Download references

Funding

The authors would like to thank CIHR/NSERC Collaborative Health Research Projects (CHRP), NSERC Discovery Grant, Heart & Stroke Foundation of Alberta, NWT, and Nunavut and Servier Canada Inc. for providing the research funding that supported this work. The graphics processor used in this research was donated by the NVIDIA Corporation.

Author information

Authors and Affiliations

Authors

Contributions

DK wrote the manuscript, software and algorithms necessary for the project, and performed all of the analysis to obtain the results. AH provided technical insight and manuscript editing. TS and HB provided the ground truth contours for the dataset. PB provided technical insight and manuscript editing. MN provided insight into the methodology, clinical expertise and significant editing of the manuscript. KP provided technical expertise, significant editing of the manuscript, including feedback on the figures and tables.

Corresponding author

Correspondence to Deepa Krishnaswamy.

Ethics declarations

Conflicts of interest

There are no conflicts of interest or competing interests to report.

Informed Consent

No animal studies were carried out by the authors for this article. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaswamy, D., Hareendranathan, A.R., Suwatanaviroj, T. et al. A New Semi-automated Algorithm for Volumetric Segmentation of the Left Ventricle in Temporal 3D Echocardiography Sequences. Cardiovasc Eng Tech 13, 55–68 (2022). https://doi.org/10.1007/s13239-021-00547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00547-6

Keywords

Navigation