Skip to main content
Log in

Electric field control of magnetism: multiferroics and magnetoelectrics

  • Review Paper
  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

This article is written on behalf of a large number of colleagues, collaborators, and researchers in the field of complex oxides as well as current and former students and postdocs who continue to enable and undertake cutting-edge research in the field of multiferroics, magnetoelectrics, and the pursuit of electric-field control of magnetism. What we present is something that is extremely exciting from both a fundamental science and applications perspective and has the potential to revolutionize our world. Needless to say, to realize this potential will require numerous new innovations, both in the fundamental science arena as well as translating these scientific discoveries into real applications. Thus, this article will attempt to bridge the gap between fundamental condensed-matter physics and the actual manifestations of the physical concepts into real-life applications. We hope this article will help spur more translational research within the broad materials physics community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. S. Manipatruni, D.E. Nikonov, I.A. Young, Beyond CMOS computing with spin and polarization. Nat. Phys. 14(4), 338 (2018)

    Google Scholar 

  2. H.K. Khan, D.A. Hounshell, E.R.H. Fuchs, Science and research policy at the end of Moore’s law. Nat. Electron. 1, 14–21 (2018)

    Google Scholar 

  3. https://everipedia-storage.s3-accelerate.amazonaws.com/ProfilePics/6666672575499973088-1481831610.png

  4. G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998)

    Google Scholar 

  5. R.H. Dennard, V.L. Rideout, E. Bassous, A.R. Leblanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9(5), 256–268 (1974)

    ADS  Google Scholar 

  6. C.E. Shannon, A universal Turing machine with two internal states. J. Symb. Log. 36, 532 (1971)

    Google Scholar 

  7. K.J. Kuhn, Considerations for ultimate CMOS scaling. IEEE Trans. Electron Dev. 59(7), 1813–1828 (2012)

    ADS  Google Scholar 

  8. I. Ferain, C.A. Colinge, J.-P. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479, 310–316 (2011)

    ADS  Google Scholar 

  9. T.N. Theis, P.M. Solomon, It’s time to reinvent the transistor! Science 327(5973), 1600–1601 (2010)

    ADS  Google Scholar 

  10. S. Manipatruni et al., Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, p35 (2019)

    ADS  Google Scholar 

  11. S. Salahuddin, S. Datta, The era of hyperscaling in electronics. Nat. Electron. 442, 442–450 (2018)

    Google Scholar 

  12. C. Mailhiot, Sandia National Laboratories, energy-computing: challenges and opportunities beyond Moore’s law (2018)

  13. Adapted from, gadgets and gigawatts, policies for energy efficient electronics, International Energy Agency (2009)

  14. P. Ball, Computer engineering: feeling the heat. Nature 492, 174–176 (2012)

    ADS  Google Scholar 

  15. V.V. Zhirnov, R.K. Cavin, Nat. Nanotechnol. 3, 77 (2008)

    ADS  Google Scholar 

  16. S. Salahuddin, K. Ni, S. Datta, Nat. Electron. 1, 442–450 (2018)

    Google Scholar 

  17. R. Ramesh, S. Manipatruni, I. Young, Electric-field control of magnetism. MRS Bull. 44(4), 288–294 (2019)

    ADS  Google Scholar 

  18. L. Martin et al., Mater. Sci. Eng. R 68, 89–133 (2010)

    ADS  Google Scholar 

  19. T. Wu et al., Phys. Rev. Lett. 86, 5998 (2001)

    ADS  Google Scholar 

  20. C. Song, B. Cui, F. Li, X. Zhou, F. Pan, Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog. Mater Sci. 87, 33–82 (2017)

    Google Scholar 

  21. N.A. Spaldin, R. Ramesh, Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019)

    Google Scholar 

  22. C. Ederer, N.A. Spaldin, Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 76, 214404 (2007)

    ADS  Google Scholar 

  23. H. Schmid, Multiferroic magnetoelectrics. Ferroelectrics 162, 317 (1994)

    Google Scholar 

  24. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005)

    ADS  Google Scholar 

  25. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007)

    ADS  Google Scholar 

  26. Areas to Watch, Science 318, 1858 (2007)

    Google Scholar 

  27. Y. Wang, J. Hu, Y. Lin, C.-W. Nan, Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61 (2010)

    Google Scholar 

  28. A.P. Pyatakov, A.K. Zvezdin, Magnetoelectric and multiferroic media. Physics Uspekhi 55, 557 (2012)

    ADS  Google Scholar 

  29. Y. Tokura, S. Seki, N. Nagaosa, Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014)

    ADS  Google Scholar 

  30. S. Dong, J.-M. Liu, S.W. Cheong, Z. Ren, Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519 (2015)

    ADS  Google Scholar 

  31. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016)

    ADS  Google Scholar 

  32. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000)

    Google Scholar 

  33. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003)

    ADS  Google Scholar 

  34. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 1 (2009)

    Google Scholar 

  35. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005)

    ADS  Google Scholar 

  36. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005)

    ADS  Google Scholar 

  37. C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)

    Google Scholar 

  38. D. Kan et al., Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108–1115 (2010)

    Google Scholar 

  39. H. Naganuma, S. Yasui, K. Nishida, T. Iijima, H. Funakubo, S. Okamura, J. Appl. Phys. 109, 07D917 (2011)

    Google Scholar 

  40. Y. Huang et al., Manipulating magnetoelectric energy landscape in multiferroics. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-16727-2

    Article  Google Scholar 

  41. C.H. Yang et al., Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 10, 485–493 (2009). https://doi.org/10.1038/nmat2432

    Article  ADS  Google Scholar 

  42. M.K. Singha, Yi. Yanga, C.G. Takoudis, Coord. Chem. Rev. 253, 2920–2934 (2009)

    Google Scholar 

  43. P. Maksymovych et al., Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3. Phys. Rev. B. 85, 014119 (2012)

    ADS  Google Scholar 

  44. R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.-H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, R. Ramesh, A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009)

    ADS  Google Scholar 

  45. H. Bea, B. Dupe, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros et al., Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009)

    ADS  Google Scholar 

  46. H.M. Christen, J.H. Nam, H.S. Kim, A.J. Hatt, N.A. Spaldin, Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films. Phys. Rev. B 83, 144107 (2011)

    ADS  Google Scholar 

  47. A.J. Hatt, N.A. Spaldin, C. Ederer, Strain-induced isosymmetric phase transition in BiFeO3. Phys. Rev. B 81, 054109 (2010)

    ADS  Google Scholar 

  48. J.X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M.D. Rossell, P. Yu, L. You, C.H. Wang, C.Y. Kuo, J.T. Heron, Z. Hu, R.J. Zeches, H.J. Lin, A. Tanaka, C.T. Chen, L.H. Tjeng, Y.-H. Chu, R. Ramesh, Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys. Rev. Lett. 107, 147602 (2011)

    ADS  Google Scholar 

  49. J.X. Zhang, B. Xiang, Q. He, J. Seidel, R.J. Zeches, P. Yu, S.Y. Yang, C.H. Wang, Y.H. Chu, L.W. Martin, A.M. Minor, R. Ramesh, Large field-induced strains in a lead-free piezoelectric material. Nat. Nano. 6, 97 (2011)

    Google Scholar 

  50. Q. He, Y.H. Chu, J.T. Heron, S.Y. Yang, W.I. Liang, C.Y. Kuo, H.J. Lin, P. Yu, C.W. Liang, R.J. Zeches, W.C. Kuo, J.Y. Juang, C.T. Chen, E. Arenholz, A. Scholl, R. Ramesh, Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2(10), 1038 (2011)

    Google Scholar 

  51. J.C. Yang, Q. He, S.J. Suresha, C.Y. Kuo, C.Y. Peng, R.C. Haislmaier, M.A. Motyka, G. Sheng, C. Adamo, H.J. Lin, Z. Hu, L. Chang, L.H. Tjeng, E. Arenholz, N.J. Podraza, M. Bernhagen, R. Uecker, D.G. Schlom, V. Gopalan, L.Q. Chen, C.T. Chen, R. Ramesh, Y.H. Chu, Orthorhombic BiFeO3. Phys. Rev. Lett. 109, 247606 (2012)

    ADS  Google Scholar 

  52. O. Dieguez, O.E. Gonzalez-Vazquez, J.C. Wojdel, J. Íñiguez, First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev. B 83, 094105 (2011)

    ADS  Google Scholar 

  53. A. Agbelele, D. Sando, C. Toulouse, C. Paillard, R.D. Johnson, R. Rüffer, A.F. Popkov, C. Carrétéro, P. Rovillain, J.-M. Le Breton, B. Dkhil, M. Cazayous, Y. Gallais, M.-A. Méasson, A. Sacuto, P. Manuel, A.K. Zvezdin, A. Barthélémy, J. Juraszek, M. Bibes, Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv. Mater. 29, 1602327 (2017)

    Google Scholar 

  54. J. Mundy et al., Liberating a hidden antiferroelectric phase with interfacial electrostatic engineering, Science (2020) (submitted)

  55. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B 77, 014110 (2008)

    ADS  Google Scholar 

  56. T. Chen et al., A new room temperature multiferroic bismuth hexaferrite, Nature (2020) (under revision)

  57. Y.-H. Chu et al., Mater. Today 10, 16–23 (2007)

    Google Scholar 

  58. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63 (2009)

    ADS  Google Scholar 

  59. T. Gao, Z. Chen, Q.L. Huang, F. Niu, X.N. Huang, L.S. Qin, Y.X. Huang, A review: preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalysis. Rev. Adv. Mat. Sci. 40, 97 (2015)

    Google Scholar 

  60. B. Kundys, M. Viret, D. Colson, D.O. Kundys, Light-induced size changes in BiFeO3 crystals. Nat. Mater. 9, 803 (2010)

    ADS  Google Scholar 

  61. D. Sando et al., Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Comm. 7, 10718 (2016)

    ADS  Google Scholar 

  62. J. Seidel et al., Prominent electrochromism through vacancy-order melting in a complex oxide. Nat. Commun. 3, 799 (2012)

    ADS  Google Scholar 

  63. S.D. Waghmare, V.V. Jadhav, S.K. Gore, S.-J. Yoon, S.B. Ambade, B.J. Lokhande, R.S. Mane, S.-H. Han, Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures. Mat. Res. Bull. 47, 4169 (2012)

    Google Scholar 

  64. R. Jarrier, X. Marti, J. Herrero-Albillos, P. Ferrer, R. Haumont, P. Gemeiner, G. Geneste, P. Berthet, T. Schülli, P. Cevc, R. Blinc, S.S. Wong, T.-J. Park, M. Alexe, M.A. Carpenter, J.F. Scott, G. Catalan, B. Dkhil, Surface phase transitions in BiFeO3 below room temperature. Phys. Rev. B 85, 184104 (2012)

    ADS  Google Scholar 

  65. X. Marti, P. Ferrer, J. Herrero-Albillos, J. Narvaez, V. Holy, N. Barrett, M. Alexe, G. Catalan, Skin layer of BiFeO3 single crystals. Phys. Rev. Lett. 106, 236101 (2011)

    ADS  Google Scholar 

  66. S.M. Selbach, T. Tybell, M.-A. Einarsrud, T. Grande, Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mat. 19, 6478 (2007)

    Google Scholar 

  67. M. Matsubara, Y. Kaneko, J.-P. He, H. Okamoto, Y. Tokura, Ultrafast polarization and magnetization response of multiferroic GaFeO3 using time-resolved nonlinear optical techniques. Phys. Rev. B 79, 140411 (2009)

    ADS  Google Scholar 

  68. S.H. Skjaervø, Q. Meier, E.S. Bozin, S.J.L. Billinge, M. Feygenson, N.A. Spaldin, S.M. Selbach, Unconventional order-disorder phase transition in hexagonal manganites. Phys. Rev. X 9, 031001 (2019)

    Google Scholar 

  69. S.V. Kalinin, S. Pennycook, Building matter atom by atom by scanning probes and electron beams, MRS Bull. (2016)

  70. I. Gross, W. Akhtar, V. Garcia, L.J. Martínez, S. Chouaieb, K. Garcia, C. Carrétéro, A. Barthélémy, P. Appel, P. Maletinsky, J.-V. Kim, J.Y. Chauleau, N. Jaouen, M. Viret, M. Bibes, S. Fusil, V. Jacques, Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252 (2017)

    ADS  Google Scholar 

  71. J.W. Orenstein, Ultrafast spectroscopy of quantum materials. Phys. Today 65, 9 (2012)

    Google Scholar 

  72. K. Takahashi, N. Kida, M. Tonouchi, Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films. Phys. Rev. Lett. 96, 117402 (2006)

    ADS  Google Scholar 

  73. A.Y. Borisevich, O.S. Ovchinnikov, H.J. Chang, M.P. Oxley, P. Yu, J. Seidel, E.A. Eliseev, A.N. Morozovska, R. Ramesh, S.J. Pennycook, S.V. Kalinin, Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071 (2010)

    Google Scholar 

  74. J. Verbeeck, H. Tian, P. Schattschneider, Production and application of electron vortex beams. Nature 467, 301–304 (2010)

    ADS  Google Scholar 

  75. S.A. Denev et al., Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699 (2011)

    Google Scholar 

  76. G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, M. Trassin, Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat. Commun. 8, 1419 (2017)

    ADS  Google Scholar 

  77. P. García-Fernández, J.C. Wojdeł, J. Íñiguez, J. Junquera, Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016)

    ADS  Google Scholar 

  78. W. Zhong, D. Vanderbilt, K.M. Rabe, Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73, 1861 (1994)

    ADS  Google Scholar 

  79. K.M. Rabe, U.V. Waghmare, Localized basis for effective lattice Hamiltonians: lattice Wannier functions. Phys. Rev. B 52, 13236 (1995)

    ADS  Google Scholar 

  80. S. Liu, I. Grinberg, A.M. Rappe, Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations. J. Phys. Condens. Matter 25, 102202 (2013)

    ADS  Google Scholar 

  81. D. Rahmedov, D. Wang, J. Iniguez, L. Bellaiche, Magnetic cycloid of BiFeO3 from atomistic simulations. Phys. Rev. Lett. 109, 037207 (2012)

    ADS  Google Scholar 

  82. D.V. Karpinsky et al., Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO3). NPJ Comp. Mater. 3, 20 (2017)

    Google Scholar 

  83. P. Garcia-Fernandez, J.C. Wojdel, J. Iniguez, J. Junquera, Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016)

    ADS  Google Scholar 

  84. J.C. Wojdel, P. Hermet, M.P. Ljungberg, P. Ghosez, J. Iniguez, First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013)

    Google Scholar 

  85. S. Liu, I. Grinberg, A. Rappe, Nature 534, 360 (2016)

    ADS  Google Scholar 

  86. S. Bhattacharjee, D. Rahmedov, D. Wang, J. Íñiguez, L. Bellaiche, Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Phys. Rev. Lett. 112, 147601 (2014)

    ADS  Google Scholar 

  87. D. Wang, J. Weerasinghe, A. Albarakati, L. Bellaiche, Terahertz dielectric response and coupled dynamics of ferroelectrics and multiferroics from effective Hamiltonian simulations. Int. J. Mod. Phys. B 27, 1330016 (2013)

    ADS  Google Scholar 

  88. N.A. Spaldin, M. Fiebig, M. Mostovoy, The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008)

    ADS  Google Scholar 

  89. P. Tolédano, M. Ackermann, L. Bohaty, P. Becker, T. Lorenz, N. Leo, M. Fiebig, Primary ferrotoroidicity in antiferromagnets. Phys. Rev. B 92, 094431 (2015)

    ADS  Google Scholar 

  90. N.A. Spaldin, M. Fechner, E. Bousquet, A.V. Balatsky, L. Nordström, Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88, 094429 (2013)

    ADS  Google Scholar 

  91. F. Thöle, M. Fechner, N.A. Spaldin, First-principles calculation of the bulk magnetoelectric monopole density: Berry phase and Wannier function approaches. Phys. Rev. B 93, 195167 (2016)

    ADS  Google Scholar 

  92. Y. Gao, D. Vanderbilt, D. Xiao, Microscopic theory of spin toroidization in periodic crystals. Phys. Rev. B 97, 134423 (2018)

    ADS  Google Scholar 

  93. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009)

    ADS  Google Scholar 

  94. S. Farokhipoor, B. Noheda, Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011)

    ADS  Google Scholar 

  95. G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012)

    ADS  Google Scholar 

  96. E.A. Eliseev, A.N. Morozovska, G.S. Svechnikov, V. Gopalan, V.Y. Shur, Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011)

    ADS  Google Scholar 

  97. Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L.W. Martin, Y.-H. Chu, J.F. Scott, R. Ramesh, Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012)

    ADS  Google Scholar 

  98. N. Domingo et al., J. Phys. Condens. Matter 29, 334003 (2017)

    Google Scholar 

  99. P. Maksymovych, J. Seidel, Y.H. Chu, P.P. Wu, A.P. Baddorf, L.Q. Chen, S.V. Kalinin, R. Ramesh, Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011)

    ADS  Google Scholar 

  100. M. Daraktchiev, G. Catalan, J.F. Scott, Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 024115 (2010)

    Google Scholar 

  101. S.Y. Yang et al., Nat. Nanotech. 5, 143 (2010)

    ADS  Google Scholar 

  102. D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N.A. Spaldin, R. Ramesh, M. Fiebig, Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284 (2012)

    ADS  Google Scholar 

  103. T. Sluka, A.K. Tagantsev, P. Bednyakov, N. Setter, Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Comm. 4, 1808 (2013)

    ADS  Google Scholar 

  104. S. Farokhipoor, C. Magok, S. Venkatesan, J. Iniguez, C.J.M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. de Graaf, A. Müller, M. Döblinger, C. Scheu, B. Noheda, Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379 (2014)

    ADS  Google Scholar 

  105. E.K.H. Salje, Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. Chem. Phys. Chem. 11, 940 (2010)

    Google Scholar 

  106. D. Meier, Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015)

    ADS  Google Scholar 

  107. D. Meier, J. Seidel, M. Gregg, R. Ramesh, Domain Walls: From Fundamental Properties to Nanotechnology Concepts (Oxford University Press, Oxford, 2020).

    Google Scholar 

  108. N.A. Spaldin, Multiferroics: from the cosmically large to the subatomically small. Nat. Rev. Mater. 2, 17017 (2017)

    ADS  Google Scholar 

  109. S. Manipatruni, D.E. Nikonov, I.A. Young, Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338 (2018)

    Google Scholar 

  110. S. Manipatruni, D.E. Nikonov, C.-C. Lin, T. Gosavi, P. Bhagwati, Y. Huang, H. Li, R. Ramesh, I.A. Young, Magnetoelectric spin orbit logic: a scalable charge mediated nonvolatile logic. Nature 565, 35 (2019)

    ADS  Google Scholar 

  111. M. Bibes, A. Barthelemy, Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425 (2008)

    ADS  Google Scholar 

  112. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, H. Ohno, Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008)

    ADS  Google Scholar 

  113. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 06040 (2005)

    Google Scholar 

  114. T. Zhao et al., Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006)

    ADS  Google Scholar 

  115. D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008)

    ADS  Google Scholar 

  116. Q. He, Y.H. Chu, J.T. Heron, S.Y. Yang, W.I. Liang, C.Y. Kuo, H.J. Lin, P. Yu, C.W. Liang, R.J. Zeches, W.C. Kuo, J.Y. Juang, C.T. Chen, E. Arenholz, A. Scholl, R. Ramesh, Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. (2011). https://doi.org/10.1038/ncomms1221

    Article  Google Scholar 

  117. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004)

    ADS  Google Scholar 

  118. F. Zavaliche, H. Zheng, L.M. Ardabili, S.Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D.G. Schlom, Y. Suzuki, R. Ramesh, Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005)

    ADS  Google Scholar 

  119. A. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M. Bibes, A. Barthélémy, Nano Lett 12, 1141 (2012)

    ADS  Google Scholar 

  120. J.T. Heron, J.L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J.D. Clarkson et al., Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370 (2014)

    ADS  Google Scholar 

  121. P. Yu, W. Luo, D. Yi, J.X. Zhang, M.D. Rossell, C.-H. Yang, L. You, G. Singh-Bhalla, S.Y. Yang, Q. He, Q.M. Ramasse, R. Erni, L.W. Martin, Y.H. Chu, S.T. Pantelides, S.J. Pennycook, R. Ramesh, Interface control of bulk ferroelectric polarization. Proc. Nat. Acad. Sci. 109, 9710 (2012)

    ADS  Google Scholar 

  122. M. Huijben et al., Adv. Mater. 25(34), 4739–4745 (2013)

    Google Scholar 

  123. S.M. Wu et al., Reversible electric control of exchange bias in a multiferroic field effect device. Nat. Mater. 9, 756 (2010)

    ADS  Google Scholar 

  124. S.M. Wu, S.A. Cybart, D. Yi et al., Full electric control of exchange bias. Phys. Rev. Lett. 110, 067202 (2013)

    ADS  Google Scholar 

  125. X. He et al., Robust isothermal electric control of exchange bias at room temperature. Nat. Mater 9, 579 (2010)

    ADS  Google Scholar 

  126. M. Gruner, E. Hoffmann, P. Entel, Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in a-FeRh. Phys. Rev. B 67, 064415 (2003)

    ADS  Google Scholar 

  127. V.L. Moruzzi, P.M. Marcus, Antiferromagnetic-ferromagnetic transition in FeRh. Phys. Rev. B 46, 2864 (1992)

    ADS  Google Scholar 

  128. R.O. Cherifi et al., Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014)

    ADS  Google Scholar 

  129. Y. Lee et al., Large resistivity modulation in mixed-phase metallic systems. Nat. Commun. 6, 5959 (2015)

    ADS  Google Scholar 

  130. Z.Q. Liu et al., Full electroresistance modulation in a mixed-phase metallic alloy. Phys. Rev. Lett. 116, 097203 (2016)

    ADS  Google Scholar 

  131. J.T. Heron et al., Nature 516, 370–373 (2014)

    ADS  Google Scholar 

  132. J.T. Heron, D.G. Schlom, R. Ramesh, Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 10(1063/1), 4870957 (2014)

    Google Scholar 

  133. I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Modern Phys. 76, 323 (2004)

    ADS  Google Scholar 

  134. H. Nakayama, Y. Kanno, H. An, T. Tashiro, S. Haku, A. Nomura, K. Ando, Rashba–Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett. 117, 116602 (2016)

    ADS  Google Scholar 

  135. A. Hoffmann, S.D. Bader, Opportunities at the frontiers of spintronics. Phys. Rev. Appl. 4, 047001 (2015)

    ADS  Google Scholar 

  136. B. Prasad, Y.-L. Huang, R.V. Chopdekar, Z. Chen, J. Steffes, S. Das, Q. Li, M. Yang, C.-C. Lin, T. Gosavi, D.E. Nikonov, Z.Q. Qiu, L.W. Martin, B.D. Huey, I. Young, J. Íñiguez, S. Manipatruni, R. Ramesh, Ultralow Voltage Manipulation of Ferromagnetism. Adv. Mater. 32, 2001943 (2020)

    Google Scholar 

  137. J.J. Steffes, R.A. Ristau, R. Ramesh, B.D. Huey, Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proc Natl Acad Sci (2018). https://doi.org/10.1073/pnas.1806074116

    Article  Google Scholar 

  138. P. Chandra, M. Dawber, P.B. Littlewood, J.F. Scott, Scaling of the coercive field with thickness in thin-film ferroelectrics. Ferroelectrics 313, 7 (2004)

    Google Scholar 

  139. Y.H. Chu, Q. Zhan, C.-H. Yang, M.P. Cruz, L.W. Martin, T. Zhao, P. Yu, R. Ramesh, P.T. Joseph, I.N. Lin, W. Tian, D.G. Schlom, Appl. Phys. Lett. 92, 102909 (2008)

    ADS  Google Scholar 

  140. P. Maksymovych, M. Huijben, M. Pan, S. Jesse, N. Balke, Y.-H. Chu, H.J. Chang, A.Y. Borisevich, A.P. Baddorf, G. Rijnders, D.H.A. Blank, R. Ramesh, S.V. Kalinin, Phys. Rev. B 85, 014119 (2012)

    ADS  Google Scholar 

  141. E. Lesne, Y. Fu, S. Oyarzun, J.C. Rojas-Sánchez, D.C. Vaz, H. Naganuma, G. Sicoli, J.-P. Attané, M. Jamet, E. Jacquet, J.-M. George, A. Barthélémy, H. Jarès, A. Fert, M. Bibes, L. Vila, Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261 (2016)

    ADS  Google Scholar 

  142. N.X. Sun, G. Srinivasan, Voltage control of magnetism in multiferroic heterostructures and devices. Spin 2, 1240004 (2012)

    Google Scholar 

  143. H. Lin, Y. Gao, X. Wang, T. Nan, M. Liu, J. Lou, G. Yang, Z. Zhou, X. Yang, J. Wu, M. Li, Z. Hu, N.X. Sun, Integrated magnetics and multiferroics for compact and power-efficient sensing memory, power, RF and microwave electronics. IEEE Trans. Magn. 52, 7 (2016)

    Google Scholar 

  144. G.A. Smolenskii, I.E. Chupis, Ferroelectromagnets. Sov. Phys. Usp. 25(7), 475–490 (1982)

    ADS  Google Scholar 

  145. For example, Linac Coherent Light Source (LCLS) at Stanford Linear Accelerator Center. Stanford University, Stanford

  146. S.S. Dhillon et al., The 2017 terahertz science and technology road map. J. Phys D: Appl. Phys. 50, 043001 (2017)

    ADS  Google Scholar 

  147. D. Juraschek, M. Fechner, A.V. Balatsky, N.A. Spaldin, Dynamical multiferroicity. Phys. Rev. Mater. 1, 104401 (2017)

    Google Scholar 

  148. K. Abraha, D.R. Tilley, Theory of far infrared properties of magnetic surfaces, films and superlattices. Surf. Sci. Rep. 24, 129 (1996)

    ADS  Google Scholar 

  149. D. Talbayev, S.A. Trugman, S. Lee, H.T. Yi, S.-W. Cheong, A.J. Taylor, Long-wavelength magnetic and magnetoelectric excitations in the ferroelectric antiferromagnet BiFeO3. Phys. Rev. B 83, 094403 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

We have written this article on behalf of many collaborators and co-workers worldwide and acknowledge the intellectual participation and contribution of a large number of our colleagues worldwide. The rapid pace of development in this field means that it is impossible to acknowledge and cite each of them independently. We encourage the interested reader to dive into the review articles cited in this paper as well as reach out to us if we can be of further assistance. Our work, especially in the academic world, would not have been possible without the sustained support of federal and industrial funding agencies. Particularly, the sustained support of the U.S. Department of Energy Basic Energy Sciences Office, the National Science Foundation, including the MRSEC program, the Army Research Office, Intel Corp., and the Semiconductor Research Corporation’s JUMP Initiative is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, R., Martin, L.W. Electric field control of magnetism: multiferroics and magnetoelectrics. Riv. Nuovo Cim. 44, 251–289 (2021). https://doi.org/10.1007/s40766-021-00019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40766-021-00019-6

Keywords

Navigation