Skip to main content
Log in

Evaluating the Optimal Capacity for the Implementation of Fluidized Catalytic Cracking in the Refinery by the Technical and Economic Analysis

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Fluidized catalytic cracking (FCC) unit has vital role in the process of modern refineries because this unit is used for production of valuable refinery products. The aim of this research is to study different capacities of the feedstock in FCC unit and to find the maximum available capacity with consideration of technical and economic criteria. In this regard, process simulation of this unit is performed in the Aspen HYSYS software. Next, this process simulation is imported to Aspen Capital Cost Estimator (or ICARUS) for operating cost (OPEX) and capital cost (CAPEX) evaluations. Finally, it is tried to optimize the capacity of fluidized bed catalytic cracking process. By investigating the results, it was revealed that the breakeven point (BEP) in this unit is in the capacity of 30 000 barrels per day. It means that total cost (operating and capital costs) and net profit (revenue of products) are equal and at the higher capacities than this BEP, FCC unit has profitability. Based on the economic analysis, it could be found that CAPEX and OPEX in the BEP capacity will be more than 156 618 948 $ and 37 432 199 $/yr, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Daminev, R.R., Chanyshev, R.R., Latypova, F.N., Vil’danov, F.Sh., and Karimof, O.Kh., Petrol. Chem., 2015, vol. 55, pp. 683–685. https://doi.org/10.1134/S0965544115080034

    Article  CAS  Google Scholar 

  2. Chernysheva, E.A., Piskunov, I.V., and Kapustin, V.M., Petrol. Chem., 2020, vol. 60, pp. 1–15. https://doi.org/10.1134/S0965544120010053

    Article  CAS  Google Scholar 

  3. Gorbunov, D.N., Nenasheva, M.V., Matsukevich, R.P., Terenina, M.V., Putilin, F.N., Kardasheva, Yu.S., Maksimov, A.L., and Karakhanov, E.A., Petrol. Chem., 2019, vol. 59, pp. 1009–1016. https://doi.org/10.1134/S0965544119090056

    Article  CAS  Google Scholar 

  4. Khadzhiev, S.N., Gerzeliev, I.M., Kapustin, V.M., Kadiev, Kh.M., Dement’ev, K.I., and Pakhmanova, O.A., Petrol. Chem., 2011, vol. 51, pp. 32–38. https://doi.org/10.1134/S0965544111010087

    Article  CAS  Google Scholar 

  5. Dehaghani, A.H.S. and Pirouzfar, V., Petrol. Chem., 2018, vol. 58, no. 8, pp. 702–708. https://doi.org/10.1134/S0965544118080042

    Article  Google Scholar 

  6. Saleh, S., Pirouzfar, V., and Alihosseini, A., J. Therm. Anal. Calorim., 2019, vol. 136, no. 4, pp. 1817–1830. https://doi.org/10.1007/s10973-018-7809-3

    Article  CAS  Google Scholar 

  7. Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Int. J. Chem. React. Eng., 2018, vol. 16, no. 7, p. 20170229. https://doi.org/10.1515/ijcre-2017-0229

    Article  CAS  Google Scholar 

  8. Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Int. J. Appl. Ceram. Technol., 2018, vol. 15, pp. 734–741. https://doi.org/10.1111/ijac.12830

    Article  CAS  Google Scholar 

  9. Pirouzfar, V. and Omidkhah, M., Iran. Polym. J., 2016, vol. 25, no. 3, pp. 203–212. https://doi.org/10.1007/s13726-016-0414-z

    Article  CAS  Google Scholar 

  10. Kianfar, E., Pirouzfar, V., and Sakhaeinia, H., J. Taiwan Inst. Chem. Eng., 2017, vol. 80, pp. 954–962. https://doi.org/10.1016/j.jtice.2017.08.017

    Article  CAS  Google Scholar 

  11. Salimi, M., Pirouzfar, V., and Kianfar, E., Polym. Sci. Ser. A, 2017, vol. 59, no. 4, pp. 566–574. https://doi.org/10.1134/S0965545X17040071

    Article  CAS  Google Scholar 

  12. Soleymanipour, S.F., Dehaghani, A.H.S., Pirouzfar, V., and Alihosseini, A., J. Appl. Polym. Sci., 2016, vol. 133, no. 34. https://doi.org/10.1002/app.43839

  13. Heydari, S. and Pirouzfar, V., RSC Adv., 2016, vol. 6, no. 17, pp. 14149–14163. https://doi.org/10.1039/C5RA27772H

    Article  CAS  Google Scholar 

  14. Pirouzfar, V., Moghaddam, A.Z., and Mirza, B., J. Energy Resour. Technol., 2012, vol. 134, no. 4, pp. 041101/1–041101/6. https://doi.org/10.1115/1.4007483

    Article  CAS  Google Scholar 

  15. Zamankhan, F., Pirouzfar, V., Ommi, F., and Valihesari, M., Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 22889–22902. https://doi.org/10.1007/s11356-018-2066-3

    Article  CAS  Google Scholar 

  16. Valihesari, M., Pirouzfar, V., Ommi, F., and Zamankhan, F., Fuel, 2019, vol. 254, p. 115618. https://doi.org/10.1016/j.fuel.2019.115618

    Article  CAS  Google Scholar 

  17. Hashemzehi, M., Pirouzfar, V., Nayebzadeh, H., and Alihosseini, A., Fuel, 2020, vol. 263, p. 116422. https://doi.org/10.1016/j.fuel.2019.116422

    Article  CAS  Google Scholar 

  18. Hashemzehi, M., Pirouzfar, V., Nayebzadeh, H., and Alihosseini, A., Adv. Powder Technol., 2020, vol. 31, no. 4, pp. 1470–1479. https://doi.org/10.1016/j.apt.2020.01.010

    Article  CAS  Google Scholar 

  19. Dehaghani, A.H.S. and Pirouzfar, V., Chem. Eng. Technol., 2017, vol. 40, pp. 1693–1701. https://doi.org/10.1002/ceat.201600693

    Article  CAS  Google Scholar 

  20. Luckenbach, E.C., Worley, A.C., Reichle, A.D., and Gladrow, E.M., Petroleum Processing Handbook, McKetta, J.J., Ed., New York, Marcel Dekker Inc., 1992, p. 349.

  21. Sadeghbeigi, R., Fluid Catalytic Cracking: Design, Operation, and Troubleshooting of FCC Facilities, Houston: Gulf Publishing Company, TX, 1995.

  22. O’Connor, P., Hydrocarbon Processing, Int. Ed., 1991, vol. 70, no. 11, pp. 76–84.

  23. Gary, J.H. and Handwerk, G.E., Petroleum Refining Technology and Economics, New York: Marcel Dekker, Inc., 2001, 4th ed.

  24. Nelson, W.L., Petroleum Refinery Engineering, New York: McGraw–Hill Book Co., 1958, 4th ed., pp. 759–810.

  25. Bradley, S.A., Gattuso, M.J., and Bertolacini, R.J., Characterization and Catalyst Development. Symposium Series, no. 411, American Chemical Society, Washington, DC, 1989.

  26. AL-Khattaf, S. and de Lasa, H.I., Ind. Eng. Chem. Res., 2001, vol. 40, pp. 5398–5404. https://doi.org/10.1021/ie001141c

    Article  CAS  Google Scholar 

  27. Germain, J.E., Catalytic Conversion of Hydrocarbons, New York: Academic Press, Inc., 1969.

  28. Jones, D.S.J. and Pujado, P.P., Handbook of Petroleum Processing, The Netherlands: Springer, 2006, 1st ed.

  29. U.S. Downstream Processing of Fresh Feed Input by Catalytic Cracking Units, Energy Information Administration, U.S. Dept. of Energy, 2012.

  30. Choudary, N.V. and Newalkar, B.L., J. Porous Mater., 2011, vol. 18, pp. 685–692. https://doi.org/10.1007/s10934-010-9427-8

    Article  Google Scholar 

  31. Panariti, N., Del Bianco, A., Del Piero, G., and Marchionna, M., Appl. Catal. A: Gen., 2000, vol. 204, pp. 203–213. https://doi.org/10.1016/S0926-860X(00)00531-7

    Article  CAS  Google Scholar 

  32. Blazek, J.J. and Davidson, C., Hydrocarbon Proc., 1981, vol. 63, pp. 2–10.

    Google Scholar 

  33. Gupta, A., Subba, R., and Rao, D., Chem. Eng. Sci., 2003, vol. 58, pp. 4567–4579. https://doi.org/10.1016/S0009-2509(03)00341-5

    Article  CAS  Google Scholar 

  34. Cerqueiraa, H.S., Caeirob, G., Costac, L., and Ramôa Ribeiro, F., J. Mol. Catal. A. Chem., 2008, vol. 292, pp. 1–13. https://doi.org/10.1016/j.molcata.2008.06.014

    Article  CAS  Google Scholar 

  35. Magee, J.S. and Mitchell, M.M., Fluid Catalytic Cracking: Science and Technology, New York: Elsevier, 1993, vol. 76, 1st ed.

  36. AL-Khattaf, S. and de Lasa, H.I., Ind. Eng. Chem. Res., 1999, vol. 38, pp. 1350–1356. https://doi.org/10.1021/ie980433z

    Article  CAS  Google Scholar 

  37. AL-Khattaf, S. and de Lasa, H.I., Can. J. Chem., 2001, vol. 79, pp. 341–348. https://doi.org/10.1002/cjce.5450790306

    Article  CAS  Google Scholar 

  38. Al-Khattaf, S., Appl. Catal. A: Gen., 2002, vol. 231, pp. 293–306. https://doi.org/10.1016/S0926-860X(02)00071-6

    Article  CAS  Google Scholar 

  39. Ali, H., Rohani, S., and Corriou, J.P., Chem. Eng Res. Des., 1997, vol. 75, pp. 401–412. https://doi.org/10.1205/026387697523868

    Article  CAS  Google Scholar 

  40. Gillis, D., Wees, M.V., and Zimmerman, P., Upgrading Residues to Maximize Distillate Yields, UOP LLC, A Honeywell Company, Des Plaines, Illinois, U.S.A., 2007.

  41. Pradhan, K., BTech Thesis, Odisha, 2012.

  42. Sahu, J., Mahalik, K., Nam, H.K., Ling, T.Y., Woon, T.S., Rahman, M.S.B.A., Mohanty, Y., Jayakumar, N., and Jamuar, S., Environ. Prog. Sustain. Energy, 2014, vol. 33, pp. 298–307. https://doi.org/10.1002/ep.11748

    Article  CAS  Google Scholar 

  43. Popa, C., Procedia Eng., 2015, vol. 100, pp. 602–608. https://doi.org/10.1016/j.proeng.2015.01.410

    Article  Google Scholar 

  44. Popa, C., Procedia Eng., 2014, vol. 89, pp. 1469–1474. https://doi.org/10.1016/j.proeng.2014.03.143

    Article  CAS  Google Scholar 

  45. Gupta, R.K., Kumar, V., and Srivastava, V.K., Chem. Eng. Sci., 2007, vol. 62, pp. 4510–4528. https://doi.org/10.1016/j.ces.2007.05.009

    Article  CAS  Google Scholar 

  46. Speight, J.G., Ann. Rev. Energy, 1986, vol. 11, pp. 253–274. https://doi.org/10.1146/annurev.eg.11.110186.001345

    Article  Google Scholar 

  47. Gatte, R.R., Harding, R.H., Albro, T.G., Chin, D.S., and Wormsbecher, R.F., ACS Preprints, 1992, vol. 137, no. 1, pp. 33–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Pirouzfar or C.-H. Su.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 4, pp. 483–493 https://doi.org/10.31857/S0028242121040043.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aregawi, B.H., Atiku, F.A., Pirouzfar, V. et al. Evaluating the Optimal Capacity for the Implementation of Fluidized Catalytic Cracking in the Refinery by the Technical and Economic Analysis. Pet. Chem. 61, 729–738 (2021). https://doi.org/10.1134/S096554412107001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412107001X

Keywords:

Navigation