Skip to main content
Log in

Direct conversion of creep data to dynamic moduli using point-wise method

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

We developed a new numerical method which converts creep data to dynamic moduli without relying on viscoelastic spectra of relaxation or retardation times. This algorithm is an improvement of the previous ones (Kwon et al., 2016) in the reduction of artificial waviness in the terminal regime as well as the noise due to measurement errors. The method is the application of the point-wise polynomial regression which reduces the polynomial order dramatically compared with previous method in order to suppress the waviness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baravian, C. and D. Quemada, 1998, Using Instrumental Inertia in Controlled Stress Rheometry, Rheol. Acta 37, 223–233.

    Article  CAS  Google Scholar 

  • Cho, K.S. and G.W. Park, 2013, Fixed Point Iteration for Relaxation Spectrum from Dynamic Mechanical Data, J. Rheol. 57, 647–678.

    Article  CAS  Google Scholar 

  • Cho, K.S., 2016, Viscoelasticity of Polymers: Numerical Methods, Springer.

  • Cho, K.S., M.K. Kwon, J. Lee, and S. Kim, 2017, Mathematical Analysis on Linear Viscoelastic Identification, Korea-Aust. Rheol. J. 29, 249–268.

    Article  Google Scholar 

  • Eckstein, A., J. Suhm, C. Friedrich, R.-D. Maier, J. Sassmannshausen, M. Bochmann, and R. Mülhaupt, 1998, Determination of Plateau Moduli and Entanglement Molecular Weights of Isotactic, Syndiotactic, and Atactic Polypropylenes Synthesized with Metallocene Catalysts, Macromolecules 31, 1335–1340.

    Article  CAS  Google Scholar 

  • Evans, R.M.L., M. Tassieri, D. Auhl, and T.A. Waigh, 2009, Direct Conversion of Rheological Compliance Measurements into Storage and Loss moduli, Phys. Rev. E 80, 012501.

    Article  CAS  Google Scholar 

  • Havriliak, S. and S. Negami, 1967, A Complex Plane Representation of Dielectric Mechanical Relaxation Processes in Some Polymers, Polymer 8, 161–210.

    Article  CAS  Google Scholar 

  • He, C., P. Wood-Adams, and J.M. Dealy, 2004, Broad Frequency Range Characterization of Molten Polymers, J. Rheol. 48, 711–724.

    Article  CAS  Google Scholar 

  • Honerkamp, J. and J. Weese, 1993, A nonlinear regularization method for the calculation of relaxation spectra, Rheol. Acta 32, 65–79.

    Article  CAS  Google Scholar 

  • Moreno-Guerra, J.A., I.C. Romero-Sánchez, A. Martinez-Borquez, M. Tassieri, E. Stiakakis, and M. Laurati, 2019, Model-Free Rheo-AFM Probes the Viscoelasticity of Tunable DNA Soft Colloids, Small 15, 1904136.

    Article  CAS  Google Scholar 

  • Kim, M., J.-E. Bae, N. Kang, and K.S. Cho, 2015, Extraction of Viscoelastic Functions from Creep Data with Ringing, J. Rheol. 59, 237–252.

    Article  CAS  Google Scholar 

  • Kwon, M.K., S.H. Lee, S.G. Lee, and K.S. Cho, 2016, Direct Conversion of Creep Data to Dynamic Moduli, J. Rheol. 60, 1181–1197.

    Article  CAS  Google Scholar 

  • Lee, S.H., J.-E. Bae, and K.S. Cho, 2017, Determination of Continuous Relaxation Spectrum Based on the Fuoss-Kirkwood Relation and Logarithmic Orthogonal Power-Series Approximation, Korea-Aust. Rheol. J. 29(2), 115–127.

    Article  Google Scholar 

  • Plazek, D.J., N. Raghupathi, and S.J. Orbon, 1979, Determination of Dynamic Storage and Loss Compliances from Creep Data, J. Rheol. 23, 477–488.

    Article  CAS  Google Scholar 

  • Pourahmadi, M., 1984, Taylor expansion of and some applications, Am. Math. Monthly 91, 303–307.

    Google Scholar 

  • Schwarzl, F.R., 1969, The Numerical Calculation of Storage and Loss Compliance from Creep Data for Linear Viscoelastic Materials, Rheol. Acta 8, 6–17.

    Article  Google Scholar 

  • Tassieri, M., R.M.L. Evans, R.L. Warren, N.J. Bailey, and J.M. Cooper, 2012, Microrheology with Optical Tweezers: Data Analysis, New J. Phys. 14, 115032.

    Article  Google Scholar 

  • Tassieri, M., M. Laurati, D.J. Curtis, D.W. Auhl, S. Coppola, A. Scalfati, K. Hawkins, P.R. Williams, and J.M. Cooper, 2016, i-Rheo: Measuring the Material’s Linear Viscoelastic Properties “in a step”!, J. Rheol. 60, 649–660.

    Article  CAS  Google Scholar 

  • Tassieri, M., J. Ramirez, N.C. Karayiannis, S.K. Sukumaran, and Y. Masubuchi, 2018, i-Rheo GT: Transforming from Time to Frequency Domain without Artifacts, Macromolecules 51, 5055–5068.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mid-Career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1A2B1005506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Cho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lee, J. & Cho, K.S. Direct conversion of creep data to dynamic moduli using point-wise method. Korea-Aust. Rheol. J. 33, 105–112 (2021). https://doi.org/10.1007/s13367-021-0009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-021-0009-x

Keywords

Navigation