Skip to main content
Log in

Adaptive Virtual Element Method for Optimal Control Problem Governed by General Elliptic Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper a posteriori error analysis of virtual element method (VEM) for the optimal control problem governed by general elliptic equation is presented. The virtual element discrete scheme is constructed with virtual element approximation of the state equation and variational discretization of the control variable. Based on the a posteriori error estimates of virtual element method for general elliptic equation and approximated error equivalence of the solution of the optimal control problem to solutions of the state and adjoint problems we build up upper and lower a posteriori error estimates of the optimal control problem. Under the Dörfler’s marking strategy, the traditional projected gradient algorithm and adaptive VEM algorithm drived by the state and adjoint error estimators are used to solve the optimal control problem. Numerical experiments are carried out to illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhu, J., Zeng, Q.C.: A mathematical formulation for optimal control of air pollution. Sci. China Ser. D. 46, 994–1002 (2003)

    Article  Google Scholar 

  2. Martínez, A., Rodríguez, C., Vázquez-Méndez, M.E.: Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. Control Optim. 38, 1534–553 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhu, J., Zeng, Q.C., Guo, D.J., Liu, Z.: Optimal control problems related to the navigation channel engineering. Sci. China Ser. E. 40(1), 82–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casas, E., Tröltzsch, F.: Error estimates for the finite element approximation of a semilinear elliptic control problem. Control Cybernet. 31, 695–712 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45(5), 1937–1953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of elliptic control problems with constraints on the gradient. Numer. Math. 111(3), 335–350 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gong, W., Hinze, M., Zhou, Z.J.: Finite element method and a priori error estimates for Dirichlet boundary control problems governed by parabolic PDEs. J. Sci. Comput. 66, 941–967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, Z.J., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 71(1), 301–318 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Sung, L.Y.: A new convergence analysis of finite element methods for elliptic distributed optimal control problems with pointwise state constraints. SIAM J. Control Optim. 55(4), 2289–2304 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, Y.P., Liu, W.B.: A posteriori error estimates for mixed finite element solutions of convex optimal control problems. J. Comput. Appl. Math. 211(1), 76–89 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cheng, Y.P., Huang, Y.Q., Liu, W.B., Yan, N.N.: Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J. Sci. Comput. 42(3), 382–403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, W.B., Ma, H.P., Tang, T., Yan, N.N.: A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42(3), 1032–1061 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, Z.J., Yu, X.M., Yan, N.N.: Local discontinuous Galerkin approximation of convection-dominated diffusion optimal control problems with control constraints. Numer. Methods Partial Differ. Equ. 30(1), 339–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yücel, H., Stoll, M., Benner, P.: A discontinuous Galerkin method for optimal control problems governed by a system of convection–diffusion PDEs with nonlinear reaction terms. Comput. Math. Appl. 70(10), 2414–2431 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Becker, R., Vexler, B.: Optimal control of the convection–diffusion equation using stabilized finite element methods. Numer. Math. 106(3), 349–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fu, H.F., Rui, H.X., Hou, J., Li, H.H.: A stabilized mixed finite element method for elliptic optimal control problems. J. Sci. Comput. 66(3), 968–986 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weng, Z.F., Yang, J.Z., Lu, X.L.: A stabilized finite element method for the convection dominated diffusion optimal control problem. Appl. Anal. 95(12), 2807–2823 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, W.B., Yan, N.N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93(3), 497–521 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, W.B., Yan, N.N.: A posteriori error estimates for control problems governed by Stokes equations. SIAM J. Numer. Anal. 40(5), 1850–1869 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hintermüller, M., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints, ESAIM: Control Optim. Calc. Var. 14, 540–560 (2008)

    MATH  Google Scholar 

  24. Hoppe, R.H.W., Kieweg, M.: A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems. SIAM J. Control Optim. 17(3), 219–224 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52(3), 1832–1861 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gong, W., Yan, N.N.: Adaptive finite element method for elliptic optimal control problems: convergence and optimality. Numer. Math. 135(4), 1124–1170 (2017)

    Article  MathSciNet  Google Scholar 

  27. Shen, Y., Yan, N.N., Zhou, Z.J.: Convergence and quasi-optimality of an adaptive finite element method for elliptic Robin boundary control problem. J. Comput. Appl. Math. 356, 1–21 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. BeirãodaVeiga, L., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34(2), 759–781 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1357 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52, 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Beirão da Veiga, L., Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. 49(2), 577–599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Berrone, S., Borio, A.: A residual a posteriori error estimate for the Virtual Element Method. Math. Models Methods Appl. Sci. 27(8), 1423–1458 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mora, D., Rivera, G., Rodríguez, R.: A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl. 74, 2172–2190 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Beirão da Veiga, L., Manzini, G., Mascotto, L.: A posteriori error estimation and adaptivity in hp virtual elements. Numer. Math. 143(1), 139–175 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Deng, Y.L., Wang, F., Wei, H.Y.: A posteriori error estimates of virtual element method for a simplified friction problem. J. Sci. Comput. 83(3), 431–443 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Brenner, S.C., Guan, Q.G., Sung, L.Y.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17(4), 553–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The funding was provided by National Natural Science Foundation of China (Grant Nos. 11971276, 11301311). Natural Science Foundation of Shandong Province (Grant Nos. ZR2016JL004, ZR2017MA020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojie Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhou, Z. Adaptive Virtual Element Method for Optimal Control Problem Governed by General Elliptic Equation. J Sci Comput 88, 14 (2021). https://doi.org/10.1007/s10915-021-01528-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01528-6

Keywords

Navigation