Skip to main content
Log in

A Zr-Substituted Polyoxotungstate Built by [β-GeW10O38]12− and [A-α-PW9O34]9− Fragments: Synthesis, Structure and Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new Zr-substituted polyoxotungstate, [H2N(CH3)2]11KNa5H7[Zr4K2(β-GeW10O38)2(A-α-PW9O34)2]·39H2O (1), has been hydrothermally synthesized and characterized by single crystal X-ray diffraction, IR spectrum, UV–vis diffuse-reflectance spectrum, elemental analysis, powder X-ray diffraction, ICP-MS test and thermogravimetric analysis. The prominent feature of 1 is that mixed Keggin-type dilacunary [β-GeW10O38]12− fragment and trilacunary [A-α-PW9O34]9− fragment construct the basic framework of 1. And 1 displays special 1D double-chain and 2D thick layer formed by K+/Na+ ions. 1 exhibits well electrocatalytic behavior in the reduction of BrO3. Also, the experimental results of catalytic oxidation of representative thioethers manifest that 1 possesses a good catalytic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. A. Misra, K. Kozma, C. Streb, and M. Nyman (2019). Angew. Chem. Int. Ed. 58, 2.

    Article  CAS  Google Scholar 

  2. S. T. Zheng and G. Y. Yang (2012). Chem. Soc. Rev. 41, 7623.

    Article  CAS  PubMed  Google Scholar 

  3. S. S. Wang and G. Y. Yang (2015). Chem. Rev. 115, 4893.

    Article  CAS  PubMed  Google Scholar 

  4. W. H. Fang and G. Y. Yang (2018). Acc. Chem. Res. 51, 2888.

    Article  CAS  PubMed  Google Scholar 

  5. N. Li, J. Liu, B. X. Dong, and Y. Q. Lan (2020). Angew. Chem. Int. Ed. 59, 20779.

    Article  CAS  Google Scholar 

  6. J. X. Liu, X. B. Zhang, Y. L. Li, S. L. Huang, and G. Y. Yang (2020). Coord. Chem. Rev. 414, 213260.

    Article  CAS  Google Scholar 

  7. I. A. Weinstock, R. E. Schreiber, and R. Neumann (2018). Chem. Rev. 118, 2680.

    Article  CAS  PubMed  Google Scholar 

  8. J. S. Lee, C. Lee, J. Y. Lee, J. Ryu, and W. H. Ryu (2018). ACS Catal. 8, 7213.

    Article  CAS  Google Scholar 

  9. Z. Zhou, D. D. Zhang, L. Yang, P. T. Ma, Y. A. Si, U. Kortz, J. Y. Niu, and J. P. Wang (2013). Chem. Commun. 49, 5189.

    Article  CAS  Google Scholar 

  10. K. Yang, Y. X. Ying, L. L. Cui, J. C. Sun, H. Luo, Y. Y. Hu, and J. W. Zhao (2021). Energy Storage Mater. 34, 203.

    Article  Google Scholar 

  11. D. Wang, L. L. Liu, J. Jiang, L. J. Chen, and J. W. Zhao (2020). Nanoscale 12, 5705.

    Article  CAS  PubMed  Google Scholar 

  12. X. Xu, R. R. Meng, C. T. Lu, L. Mei, L. J. Chen, and J. W. Zhao (2020). Inorg. Chem. 59, 3954.

    Article  CAS  PubMed  Google Scholar 

  13. B. X. Zeng, Y. Zhang, Y. H. Chen, G. P. Liu, Y. Z. Li, L. J. Chen, and J. W. Zhao (2021). Inorg. Chem. 60, 2663.

    Article  CAS  PubMed  Google Scholar 

  14. O. A. Kholdeeva, G. M. Maksimov, R. I. Maksimovskaya, M. P. Vanina, T. A. Trubitsina, D. Y. Naumov, B. A. Kolesov, N. S. Antonova, J. J. CarbÓ, and J. M. Poblet (2006). Inorg. Chem. 45, 7224.

    Article  CAS  PubMed  Google Scholar 

  15. R. G. Finke, B. Rapko, and T. J. R. Weakly (1989). Inorg. Chem. 28, 1573.

    Article  CAS  Google Scholar 

  16. D. Li, H. Han, Y. Wang, X. Wang, Y. Li, and E. Wang (2013). Eur. J. Inorg. Chem. 10–11, 1926.

    Article  CAS  Google Scholar 

  17. L. L. Chen, L. L. Li, B. Liu, G. L. Xue, H. M. Hua, F. Fu, and J. W. Wang (2009). Inorg. Chem. Commun. 12, 1035.

    Article  CAS  Google Scholar 

  18. B. S. Bassil, M. H. Dickman, and U. Kortz (2006). Inorg. Chem. 45, 2394.

    Article  CAS  PubMed  Google Scholar 

  19. Z. Zhang, J. W. Zhao, and G. Y. Yang (2017). Eur. J. Inorg. Chem. 26, 3244.

    Article  CAS  Google Scholar 

  20. G. Al-Kadamany, S. S. Mal, B. Milev, B. G. Donoeva, R. I. Maksimovskaya, O. A. Kholdeeva, and U. Kortz (2010). Chem. Eur. J. 16, 11797.

    Article  CAS  PubMed  Google Scholar 

  21. X. Fang, T. M. Anderson, and C. L. Hill (2005). Angew. Chem. Int. Ed. 44, 3540.

    Article  CAS  Google Scholar 

  22. Z. Zhang, H. L. Li, Y. L. Wang, and G. Y. Yang (2020). Inorg. Chem. 58, 2372.

    Article  CAS  Google Scholar 

  23. L. Huang, S. S. Wang, J. W. Zhao, L. Cheng, and G. Y. Yang (2014). J. Am. Chem. Soc. 136, 7637.

    Article  CAS  PubMed  Google Scholar 

  24. B. S. Bassil, S. S. Mal, M. H. Dickman, U. Kortz, H. Oelrich, and L. Walder (2008). J. Am. Chem. Soc. 130, 6696.

    Article  CAS  PubMed  Google Scholar 

  25. Z. Zhang, Y. L. Wang, Y. Liu, S. L. Huang, and G. Y. Yang (2020). Nanoscale. 12, 18333.

    Article  CAS  PubMed  Google Scholar 

  26. J. W. Zhao, H. P. Jia, J. Zhang, S. T. Zheng, and G. Y. Yang (2007). Chem. Eur. J. 13, 10030.

    Article  CAS  PubMed  Google Scholar 

  27. J. Gopalakrishnan (1995). Chem. Mater. 7, 1265.

    Article  CAS  Google Scholar 

  28. B. Nohra, H. E. Moll, L. M. R. Albelo, P. Mialane, J. Marrot, C. M. Draznieks, M. O’Keeffe, R. N. Biboum, J. Lemaire, B. Keita, L. Nadjo, and A. Dolbecq (2011). J. Am. Chem. Soc. 133, 13363.

    Article  CAS  PubMed  Google Scholar 

  29. H. N. Miras, J. Yan, D. L. Long, and L. Cronin (2012). Chem. Soc. Rev. 41, 7403.

    Article  CAS  PubMed  Google Scholar 

  30. S. T. Zheng, J. Zhang, X. X. Li, W. H. Fang, and G. Y. Yang (2010). J. Am. Chem. Soc. 132, 15102.

    Article  CAS  PubMed  Google Scholar 

  31. S. T. Zheng, J. Zhang, and G. Y. Yang (2008). Angew. Chem. Int. Ed. 47, 3909.

    Article  CAS  Google Scholar 

  32. H. L. Li, C. Lian, D. P. Yin, and G.-Y. Yang (2020). Inorg. Chem. 59, 12842.

    Article  CAS  PubMed  Google Scholar 

  33. Y. L. Wang, Z. Zhang, H. L. Li, X. Y. Li, and G. Y. Yang (2019). Eur. J. Inorg. Chem. 3–4, 417.

    Article  CAS  Google Scholar 

  34. Y. L. Wang, J. W. Zhao, Z. Zhang, J. J. Sun, X. Y. Li, B. F. Yang, and G. Y. Yang (2019). Inorg. Chem. 58, 4657.

    Article  CAS  PubMed  Google Scholar 

  35. A. P. Ginsberg (1990). Inorg. Synth. 27, 108.

    Google Scholar 

  36. L. H. Bi, U. Kortz, S. Nellutla, A. C. Stowe, J. Tol, N. S. Dalal, B. Keita, and L. Nadjo (2005). Inorg. Chem. 44, 896.

    Article  CAS  PubMed  Google Scholar 

  37. F. Bannani, S. Floquet, N. Leclerc-Laronze, M. Haouas, F. Taulelle, J. Marrot, P. Koerler, and E. Cadot (2012). J. Am. Chem. Soc. 134, 19342.

    Article  CAS  PubMed  Google Scholar 

  38. R. S. Winter, J. M. Cameron, and L. Cronin (2014). J. Am. Chem. Soc. 136, 12753.

    Article  CAS  PubMed  Google Scholar 

  39. H. Xue, Z. Zhang, R. Pan, B. F. Yang, H. S. Liu, and G. Y. Yang (2016). CrystEngComm. 18, 4643.

    Article  CAS  Google Scholar 

  40. G. J. Cao, J. D. Liu, T. T. Zhuang, X. H. Cai, and S. T. Zheng (2015). Chem. Commun. 51, 2048.

    Article  CAS  Google Scholar 

  41. B. I. D. Brown and D. Altermatt (1985). Acta. Crystallogr. B41, 244.

    Article  CAS  Google Scholar 

  42. X. Y. Ma, K. Yu, J. Yuan, L. P. Cui, J. H. Lv, W. T. Dai, and B. B. Zhou (2020). Inorg. Chem. 59, 5149.

    Article  CAS  PubMed  Google Scholar 

  43. M. Ibrahim, Y. X. Xiang, B. S. Bassil, Y. H. Lan, A. K. Powell, P. D. Oliveira, B. Keita, and U. Kortz (2013). Inorg. Chem. 52, 8399.

    Article  CAS  PubMed  Google Scholar 

  44. A. Haider, B. S. Bassil, J. S. López, H. M. Qasim, C. S. D. Pipaón, M. Ibrahim, D. Dutta, Y. S. Koo, J. J. Carbó, J. M. Poblet, J. G. Mascarós, and U. Kortz (2019). Inorg. Chem. 58, 11308.

    Article  CAS  PubMed  Google Scholar 

  45. S. J. Folkman, J. S. Lopez, J. G. Mascarós, and R. G. Finke (2018). J. Am. Chem. Soc. 140, 12040.

    Article  CAS  PubMed  Google Scholar 

  46. B. Keita, A. Belhouaria, L. Nadjo, and R. J. Contant (1995). Electroanal. Chem. 381, 243.

    Article  Google Scholar 

  47. M. C. Carreno (1995). Chem. Rev. 95, 1717.

    Article  CAS  Google Scholar 

  48. I. Fernández and N. Khiar (2003). Chem. Rev. 103, 3651.

    Article  PubMed  CAS  Google Scholar 

  49. V. Y. Kukushkin (1995). Coord. Chem. Rev. 139, 375.

    Article  CAS  Google Scholar 

  50. J. Song, Z. Luo, D. K. Britt, H. Furukawa, O. M. Yaghi, K. I. Hardcastle, and C. L. Hill (2011). J. Am. Chem. Soc. 133, 16839.

    Article  CAS  PubMed  Google Scholar 

  51. M. R. Mauryaa, A. K. Chandrakar, and S. Chandb (2007). J. Mol. Catal. A: Chem. 274, 192.

    Article  CAS  Google Scholar 

  52. M. Y. Yu, J. Yang, T. T. Guo, and J. F. Ma (2020). Inorg. Chem. 59, 4985.

    Article  CAS  PubMed  Google Scholar 

  53. H. L. Li, C. Lian, L. J. Chen, J. W. Zhao, and G. Y. Yang (2020). Nanoscale. 12, 16091.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21831001, 21571016, 91122028) and the National Natural Science Foundation of China for Distinguished Young Scholars (No. 20725101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, YH., Sun, JJ., Zhang, PY. et al. A Zr-Substituted Polyoxotungstate Built by [β-GeW10O38]12− and [A-α-PW9O34]9− Fragments: Synthesis, Structure and Properties. J Clust Sci 33, 1677–1684 (2022). https://doi.org/10.1007/s10876-021-02065-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02065-w

Keywords

Navigation