Skip to main content

Advertisement

Log in

A Swine Hind Limb Ischemia Model Useful for Testing Peripheral Artery Disease Therapeutics

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Currently, there is no large animal model of sustained limb ischemia suitable for testing novel angiogenic therapeutics for peripheral artery disease (PAD) such as drugs, genes, materials, or cells. We created a large animal model suitable for efficacy assessment of these therapies by testing 3 swine hind limb ischemia (HLI) variations and quantifying vascular perfusion, muscle histology, and limb function. Ligation of the ipsilateral external and bilateral internal iliac arteries produced sustained gait dysfunction compared to isolated external iliac or unilateral external and internal iliac artery ligations. Hyperemia-dependent muscle perfusion deficits, depressed limb blood pressure, arteriogenesis, muscle atrophy, and microscopic myopathy were quantifiable in ischemic limbs 6 weeks post-ligation. Porcine mesenchymal stromal cells (MSCs) engineered to express a reporter gene were visualized post-administration via positron emission tomography (PET) in vivo. These results establish a preclinical platform enabling better optimization of PAD therapies, including cellular therapeutics, increasing bench-to-bedside translational success.

Graphical abstract

A preclinical platform for porcine studies of peripheral artery disease therapies including (1) a hind limb ischemia model and (2) non-invasive MSC viability and retention assessment via PET

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABI:

Ankle-brachial index

CT:

Computed tomography

EIA:

External iliac artery

FBS:

Fetal bovine serum

18F-MFBG:

18F-meta-fluorobenzylguanidine

GH:

Growth hormone

hNET:

Human norepinephrine transporter

IGF-1:

Insulin-like growth factor 1

IIA:

Internal iliac artery

mGFP:

mTag green fluorescent protein

MSC:

Mesenchymal stromal cell

MRI:

Magnetic resonance imaging

PAD:

Peripheral artery disease

PBS:

Phosphate-buffered saline

PET:

Positron emission tomography

TOF MRA:

Time-of-flight magnetic resonance angiography

HLI :

Hind limb ischemia

References

  1. Hamburg, N. M., & Creager, M. A. (2017). Pathophysiology of intermittent claudication in peripheral artery disease. Circulation Journal, 81(3), 281–289. https://doi.org/10.1253/circj.CJ-16-1286.

    Article  CAS  PubMed  Google Scholar 

  2. Pipinos, I. I., Judge, A. R., Selsby, J. T., Zhu, Z., Swanson, S. A., Nella, A. A., et al. (2007). The myopathy of peripheral arterial occlusive disease: part 1. Functional and histomorphological changes and evidence for mitochondrial dysfunction. Vascular and Endovascular Surgery, 41(6), 481–489. https://doi.org/10.1177/1538574407311106.

    Article  PubMed  Google Scholar 

  3. Suzuki, J., Shimamura, M., Suda, H., Wakayama, K., Kumagai, H., Ikeda, Y., et al. (2016). Current therapies and investigational drugs for peripheral arterial disease. Hypertension Research, 39(4), 183–191. https://doi.org/10.1038/hr.2015.134.

    Article  CAS  PubMed  Google Scholar 

  4. Gerhard-Herman, M. D., Gornik, H. L., Barrett, C., Barshes, N. R., Corriere, M. A., Drachman, D. E., et al. (2017). 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 135(12), e686–e725. https://doi.org/10.1161/cir.0000000000000470.

    Article  PubMed  Google Scholar 

  5. Cooke, J. P., & Chen, Z. (2015). A compendium on peripheral arterial disease. Circulation Research, 116(9), 1505–1508. https://doi.org/10.1161/circresaha.115.306403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones, W. S., Dolor, R. J., Hasselblad, V., Vemulapalli, S., Subherwal, S., Schmit, K., et al. (2014). Comparative effectiveness of endovascular and surgical revascularization for patients with peripheral artery disease and critical limb ischemia: systematic review of revascularization in critical limb ischemia. American Heart Journal, 167(4), 489–498.e487. https://doi.org/10.1016/j.ahj.2013.12.012.

    Article  PubMed  Google Scholar 

  7. Cooke, J. P., & Losordo, D. W. (2015). Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circulation Research, 116(9), 1561–1578. https://doi.org/10.1161/circresaha.115.303565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. USFDA (2010). Guidance for industry: cellular therapy for cardiac disease. In U.S. D.o.H.a.H. Services (Ed.). Rockville, .

  9. Waters, R. E., Terjung, R. L., Peters, K. G., & Annex, B. H. (2004). Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. Journal of Applied Physiology (Bethesda, MD: 1985), 97(2), 773–780. https://doi.org/10.1152/japplphysiol.00107.2004.

    Article  CAS  Google Scholar 

  10. Hassanshahi, M., Khabbazi, S., Peymanfar, Y., Hassanshahi, A., Hosseini-Khah, Z., Su, Y. W., et al. (2019). Critical limb ischemia: current and novel therapeutic strategies. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.28141.

  11. Qadura, M., Terenzi, D. C., Verma, S., Al-Omran, M., & Hess, D. A. (2018). Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells, 36(2), 161–171. https://doi.org/10.1002/stem.2751.

    Article  PubMed  Google Scholar 

  12. Teraa, M., Sprengers, R. W., Schutgens, R. E., Slaper-Cortenbach, I. C., van der Graaf, Y., Algra, A., et al. (2015). Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation, 131(10), 851–860. https://doi.org/10.1161/circulationaha.114.012913.

    Article  CAS  PubMed  Google Scholar 

  13. Perin, E. C., Murphy, M. P., March, K. L., Bolli, R., Loughran, J., Yang, P. C., et al. (2017). Evaluation of cell therapy on exercise performance and limb perfusion in peripheral artery disease: the CCTRN Patients with Intermittent Claudication Injected with ALDH Bright Cells (PACE) trial. Circulation. https://doi.org/10.1161/circulationaha.116.025707.

  14. Belch, J., Hiatt, W. R., Baumgartner, I., Driver, I. V., Nikol, S., Norgren, L., et al. (2011). Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. The Lancet, 377(9781), 1929–1937. https://doi.org/10.1016/S0140-6736(11)60394-2.

    Article  CAS  Google Scholar 

  15. Creager, M. A., Olin, J. W., Belch, J. J., Moneta, G. L., Henry, T. D., Rajagopalan, S., et al. (2011). Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation, 124(16), 1765–1773. https://doi.org/10.1161/circulationaha.110.009407.

    Article  CAS  PubMed  Google Scholar 

  16. Poole, J., Mavromatis, K., Binongo, J. N., Khan, A., Li, Q., Khayata, M., et al. (2013). Effect of progenitor cell mobilization with granulocyte-macrophage colony-stimulating factor in patients with peripheral artery disease: a randomized clinical trial. JAMA, 310(24), 2631–2639. https://doi.org/10.1001/jama.2013.282540.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida, M., Horimoto, H., Mieno, S., Nomura, Y., Okawa, H., Nakahara, K., et al. (2003). Intra-arterial bone marrow cell transplantation induces angiogenesis in rat hindlimb ischemia. European Surgical Research, 35(2), 86–91. https://doi.org/10.1159/000069401.

    Article  CAS  PubMed  Google Scholar 

  18. Caron, A., Michelet, S., Caron, A., Sordello, S., Ivanov, M. A., Delaere, P., et al. (2004). Human FGF-1 gene transfer promotes the formation of collateral vessels and arterioles in ischemic muscles of hypercholesterolemic hamsters. The Journal of Gene Medicine, 6(9), 1033–1045. https://doi.org/10.1002/jgm.594.

    Article  CAS  PubMed  Google Scholar 

  19. Tompkins, B. A., Balkan, W., Winkler, J., Gyongyosi, M., Goliasch, G., Fernandez-Aviles, F., et al. (2018). Preclinical studies of stem cell rherapy for heart disease. Circulation Research, 122(7), 1006–1020. https://doi.org/10.1161/circresaha.117.312486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harding, J., Roberts, R. M., & Mirochnitchenko, O. (2013). Large animal models for stem cell therapy. Stem Cell Research & Therapy, 4(2), 23. https://doi.org/10.1186/scrt171.

    Article  Google Scholar 

  21. Long, C. A., Timmins, L. H., Koutakis, P., Goodchild, T. T., Lefer, D. J., Pipinos, I. I., et al. (2016). An endovascular model of ischemic myopathy from peripheral arterial disease. Journal of Vascular Surgery. https://doi.org/10.1016/j.jvs.2016.07.127.

  22. Burkhardt, G. E., Gifford, S. M., Propper, B., Spencer, J. R., Williams, K., Jones, L., et al. (2011). The impact of ischemic intervals on neuromuscular recovery in a porcine (Sus scrofa) survival model of extremity vascular injury. Journal of Vascular Surgery, 53(1), 165–173. https://doi.org/10.1016/j.jvs.2010.07.012.

    Article  PubMed  Google Scholar 

  23. Grundmann, S., Hoefer, I., Ulusans, S., Bode, C., Oesterle, S., Tijssen, J. G., et al. (2006). Granulocyte-macrophage colony-stimulating factor stimulates arteriogenesis in a pig model of peripheral artery disease using clinically applicable infusion pumps. Journal of Vascular Surgery, 43(6), 1263–1269. https://doi.org/10.1016/j.jvs.2006.02.049.

    Article  PubMed  Google Scholar 

  24. Voskuil, M., van Royen, N., Hoefer, I. E., Seidler, R., Guth, B. D., Bode, C., et al. (2003). Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. American Journal of Physiology - Heart and Circulatory Physiology, 284(4), H1422–H1428. https://doi.org/10.1152/ajpheart.00506.2002.

    Article  CAS  PubMed  Google Scholar 

  25. Muhs, A., Lenter, M. C., Seidler, R. W., Zweigerdt, R., Kirchengast, M., Weser, R., et al. (2004). Nonviral monocyte chemoattractant protein-1 gene transfer improves arteriogenesis after femoral artery occlusion. Gene Therapy, 11(23), 1685–1693.

    Article  CAS  Google Scholar 

  26. Stacy, M. R., Yu, D. Y., Maxfield, M. W., Jaba, I. M., Jozwik, B. P., Zhuang, Z. W., et al. (2014). Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circulation. Cardiovascular Imaging, 7(1), 92–99. https://doi.org/10.1161/circimaging.113.000884.

    Article  PubMed  Google Scholar 

  27. Gao, Y., Aravind, S., Patel, N. S., Fuglestad, M. A., Ungar, J. S., Mietus, C. J., et al. (2020). Collateral development and arteriogenesis in hindlimbs of swine after ligation of arterial inflow. The Journal of Surgical Research, 249, 168–179. https://doi.org/10.1016/j.jss.2019.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Landázuri, N., Levit, R. D., Joseph, G., Ortega-Legaspi, J. M., Flores, C. A., Weiss, D., et al. (2016). Alginate microencapsulation of human mesenchymal stem cells as a strategy to enhance paracrine-mediated vascular recovery after hindlimb ischaemia. Journal of Tissue Engineering and Regenerative Medicine, 10(3), 222–232. https://doi.org/10.1002/term.1680.

    Article  CAS  PubMed  Google Scholar 

  29. Krueger, T. E. G., Thorek, D. L. J., Denmeade, S. R., Isaacs, J. T., & Brennen, W. N. (2018). Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Translational Medicine, 7(9), 651–663. https://doi.org/10.1002/sctm.18-0024.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gyöngyösi, M., Blanco, J., Marian, T., Trón, L., Petneházy, Ö., Petrasi, Z., et al. (2008). Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene rxpression. Circulation. Cardiovascular Imaging, 1(2), 94–103. https://doi.org/10.1161/circimaging.108.797449.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gibson, C. M., Ryan, K., Sparano, A., Moynihan, J. L., Rizzo, M., Kelley, M., et al. (1999). Angiographic methods to assess human coronary angiogenesis. American Heart Journal, 137(1), 169–179. https://doi.org/10.1016/S0002-8703(99)70473-4.

    Article  CAS  PubMed  Google Scholar 

  32. Powers, K. M., Schimmel, C., Glenny, R. W., & Bernards, C. M. (1999). Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated. Journal of Neuroscience Methods, 87(2), 159–165.

    Article  CAS  Google Scholar 

  33. Wen, Y., Murach, K. A., Vechetti Jr., I. J., Fry, C. S., Vickery, C., Peterson, C. A., et al. (2018). MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. Journal of Applied Physiology (Bethesda, MD: 1985), 124(1), 40–51. https://doi.org/10.1152/japplphysiol.00762.2017.

    Article  CAS  Google Scholar 

  34. Rotstein, B. H., Stephenson, N. A., Vasdev, N., & Liang, S. H. (2014). Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nature Communications, 5, 4365. https://doi.org/10.1038/ncomms5365.

    Article  CAS  PubMed  Google Scholar 

  35. Rotstein, B. H., Wang, L., Liu, R. Y., Patteson, J., Kwan, E. E., Vasdev, N., et al. (2016). Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium(III) Ylides. Chemical Science, 7(7), 4407–4417. https://doi.org/10.1039/c6sc00197a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moroz, M. A., Zhang, H., Lee, J., Moroz, E., Zurita, J., Shenker, L., et al. (2015). Comparative analysis of T cell imaging with human nuclear reporter genes. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 56(7), 1055–1060. https://doi.org/10.2967/jnumed.115.159855.

    Article  CAS  Google Scholar 

  37. Pandit-Taskar, N., Zanzonico, P., Staton, K. D., Carrasquillo, J. A., Reidy-Lagunes, D., Lyashchenko, S., et al. (2018). Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. Journal of Nuclear Medicine, 59(1), 147–153. https://doi.org/10.2967/jnumed.117.193169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koutakis, P., Myers, S. A., Cluff, K., Ha, D. M., Haynatzki, G., McComb, R. D., et al. (2015). Abnormal myofiber morphology and limb dysfunction in claudication. The Journal of Surgical Research, 196(1), 172–179. https://doi.org/10.1016/j.jss.2015.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kakihana, T., Ito, O., Sekiguchi, Y., Ito, D., Goto, H., Akamatsu, D., et al. (2017). Hip flexor muscle dysfunction during walking at self-selected and fast speed in patients with aortoiliac peripheral arterial disease. Journal of Vascular Surgery, 66(2), 523–532. https://doi.org/10.1016/j.jvs.2017.03.421.

    Article  PubMed  Google Scholar 

  40. Kaiser, E. E., Waters, E. S., Fagan, M. M., Scheulin, K. M., Platt, S. R., Jeon, J. H., et al. (2020). Characterization of tissue and functional deficits in a clinically translational pig model of acute ischemic stroke. Brain Research, 1736, 146778. https://doi.org/10.1016/j.brainres.2020.146778.

    Article  CAS  PubMed  Google Scholar 

  41. Hedayat, A. F., Park, K. H., Kwon, T. G., Woollard, J. R., Jiang, K., Carlson, D. F., et al. (2018). Peripheral vascular atherosclerosis in a novel PCSK9 gain-of-function mutant Ossabaw miniature pig model. Translational Research, 192, 30–45. https://doi.org/10.1016/j.trsl.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  42. Heinonen, I., Kemppainen, J., Kaskinoro, K., Peltonen, J. E., Borra, R., Lindroos, M. M., et al. (2010). Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity. Journal of Applied Physiology (Bethesda, MD: 1985), 108(2), 378–386. https://doi.org/10.1152/japplphysiol.00745.2009.

    Article  CAS  Google Scholar 

  43. Armstrong, R. B., Delp, M. D., Goljan, E. F., & Laughlin, M. H. (1987). Distribution of blood flow in muscles of miniature swine during exercise. Journal of Applied Physiology (Bethesda, MD: 1985), 62(3), 1285–1298. https://doi.org/10.1152/jappl.1987.62.3.1285.

    Article  CAS  Google Scholar 

  44. Varu, V. N., Hogg, M. E., & Kibbe, M. R. (2010). Critical limb ischemia. Journal of Vascular Surgery, 51(1), 230–241. https://doi.org/10.1016/j.jvs.2009.08.073.

    Article  PubMed  Google Scholar 

  45. Kościński, K., Kozłowska-Rajewicz, A., Górecki, M. T., Kamyczek, M., & Różycki, M. (2009). Month-of-birth effect on further body size in a pig model. HOMO, 60(2), 159–183. https://doi.org/10.1016/j.jchb.2008.02.003.

    Article  PubMed  Google Scholar 

  46. Dubreuil, P., Pelletier, G., Petitclerc, D., Lapierre, H., Couture, Y., Brazeau, P., et al. (1987). Influence of age and sex on basal secretion of growth hormone (GH) and on GH-induced release by porcine GH-releasing factor pGRF(1–29NH2) in growing pigs. Domestic Animal Endocrinology, 4(4), 299–307. https://doi.org/10.1016/0739-7240(87)90026-9.

    Article  CAS  PubMed  Google Scholar 

  47. Caicedo, D., Devesa, P., Alvarez, C. V., & Devesa, J. (2020). Why should growth hormone (GH) be considered a promising therapeutic agent for arteriogenesis? Insights from the GHAS trial. Cells, 9(4). https://doi.org/10.3390/cells9040807.

  48. Erman, A., Wabitsch, M., & Goodyer, C. G. (2011). Human growth hormone receptor (GHR) expression in obesity: II. Regulation of the human GHR gene by obesity-related factors. International Journal of Obesity, 35(12), 1520–1529. https://doi.org/10.1038/ijo.2011.10.

    Article  CAS  PubMed  Google Scholar 

  49. van der Bogt, K. E., Hellingman, A. A., Lijkwan, M. A., Bos, E. J., de Vries, M. R., van Rappard, J. R., et al. (2012). Molecular imaging of bone marrow mononuclear cell survival and homing in murine peripheral artery disease. JACC: Cardiovascular Imaging, 5(1), 46–55. https://doi.org/10.1016/j.jcmg.2011.07.011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T3 Labs for swine experiment organization and technical expertise.

Funding

These data were generated with support of the Aronov Foundation, the Emory University Center for Systems Imaging Pilot Funding, the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH) under Award Numbers UL1TR002378 and TL1TR002382 (J.N.D), and R01HL140223 (R.D.L.). Experiments were performed in part using the Microscopy in Medicine Core (NIH grant P01HL095070) and the Emory Integrated Genomics Core (subsidized by the Emory University School of Medicine and additionally supported by NIH Award Number UL1TR002378). The content is solely the responsibility of the authors and does not necessarily represent the views of NIH.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JND and RDL. Formal analysis: JND, SCG, and NHK. Funding acquisition: JND and RDL. Investigation: JND, SCG, NHK, LW, RJV, and JNO. Methodology: JND, RJV, SHL, MMG, JNO, and RDL. Project administration: MMG and RDL. Resources: LW, SHL, and MMG. Supervision: RDL. Visualization: JND and JNO. Writing—original draft preparation: JND. Writing—review and editing: JND, SCG, NHK, LW, RJV, MMG, JNO, and RDL.

Corresponding author

Correspondence to Rebecca D. Levit.

Ethics declarations

Ethical Approval

No human studies were performed. All institutional and national guidelines for laboratory animal care and use were followed and approved by institutional committees at T3 Labs and Emory University for swine and rat studies, respectively.

Competing interests

The authors declare no conflicts of interest.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deppen, J.N., Ginn, S.C., Kim, N.H. et al. A Swine Hind Limb Ischemia Model Useful for Testing Peripheral Artery Disease Therapeutics. J. of Cardiovasc. Trans. Res. 14, 1186–1197 (2021). https://doi.org/10.1007/s12265-021-10134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10134-8

Keywords

Navigation