Skip to main content
Log in

Rolling friction measurement of slightly non-spherical particles using direct experiments and image analysis

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In absence of any direct measurement method of rolling friction for particles that deviate from perfectly spherical shape, most DEM simulation studies use bulk calibration approach to estimate an acceptable value of this parameter. A novel method based on image analysis of static grains is proposed to calculate the rolling friction coefficient of particles that deviate slightly from the spherical shape. To compare these values obtained from image analysis, direct measurement of the rolling friction coefficient of industrial pellet particles of slightly non-spherical shape is done using two different methods. The first method involves video analysis to track the position of particles rolling over an inclined plane. The second method proposes modifications to the ASTM standard method of rolling friction measurement of spherical particles to enable measurements for slightly non-spherical particles. Results obtained from the image analysis method are found to be in very good agreement with directly measured rolling friction values. Following this approach, it is possible to measure the rolling friction coefficient of particles using image analysis in a manner similar to measuring the particle size distribution. The image analysis method can be utilised for rolling friction estimation in situations where direct measurement is not possible and has potential for wide usage in DEM simulations of the powders and bulk solids.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. ASTM G194-08(2018), Standard test method for measuring rolling friction characteristics of a spherical shape on a flat horizontal plane. ASTM International, West Conshohocken, PA, 2018, www.astm.org

  2. EDEM Discrete Element Method (DEM) software, available at https://edemsimulation.com. accessed on January 10th, 2021

  3. LIGGGHTS Open Source Discrete Element Method Particle Simulation Code, available at https://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-simulation-code. accessed on January 10th, 2021

  4. MercuryDPM, available at http://mercurydpm.org. accessed on January 10th, 2021

  5. Open source computer vision documentation, available at https://docs.opencv.org/master. accessed on June 15th, 2020

  6. PFC Itasca Consulting Group, Inc., available at https://www.itascacg.com/software/pfc. accessed on January 10th, 2021

  7. Rocky DEM Particle Simulation Software, available at https://rocky.esss.co. accessed on January 10th, 2021

  8. Yade Open Source Discrete Element Method, available at https://yade-dem.org/doc. accessed on January 10th, 2021

  9. Balevičius, R., Sielamowicz, I., Mróz, Z., Kačianauskas, R.: Effect of rolling friction on wall pressure, discharge velocity and outflow of granular material from a flat-bottomed bin. Particuology 10(6), 672–682 (2012)

    Article  Google Scholar 

  10. Barrios, G.K.P., de Carvalho, R.M., Kwade, A., Tavares, L.M.: Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol. 248, 84–93 (2013)

    Article  Google Scholar 

  11. Berrezueta, E., Cuervas-Mons, J., Rodriguez-Rey, A., Ordonez-Casado, B.: Representativity of 2D shape parameters for mineral particles in quantitative petrography. Minerals 9(12), 768 (2019)

    Article  ADS  Google Scholar 

  12. Bouwman, A.M., Bosma, J.C., Vonk, P., Wesselingh, J.A., Frijlink, H.W.: Which shape factor(s) best describe granules? Powder Technol. 146(1–2), 66–72 (2004)

    Article  Google Scholar 

  13. Coetzee, C.J.: Review: Calibration of the discrete element method. Powder Technol. 310, 104–142 (2017)

    Article  Google Scholar 

  14. Cox, E.P.: A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1(3), 179–183 (1927)

    Google Scholar 

  15. Cross, R.: Coulomb’s law for rolling friction. Am. J. Phys. 84(3), 221–230 (2016)

    Article  ADS  Google Scholar 

  16. Doménech, A., Doménech, T., Cebrián, J.: Introduction to the study of rolling friction. Am. J. Phys. 55(3), 231–235 (1987)

    Article  ADS  Google Scholar 

  17. Duris, M., Arsenijevic, Z., Jacimovski, D., Kaluderovic Radoicic, T.: Optimal pixel resolution for sand particles size and shape analysis. Powder Technol. 302, 177–186 (2016)

    Article  Google Scholar 

  18. Grima, A.P., Wypych, P.W.: Investigation into calibration of discrete element model parameters for scale-up and validation of particle-structure interactions under impact conditions. Powder Technol. 212(1), 198–209 (2011)

    Article  Google Scholar 

  19. Hentschel, M.L., Page, N.W.: Selection of descriptors for particle shape characterization. Part. Part. Syst. Charact. 20(1), 25–38 (2003)

    Article  Google Scholar 

  20. Hua, X., Curtis, J., Hancock, B.C., Ketterhagen, W.R., Wassgren, C.: The kinematics of non-cohesive, sphero-cylindrical particles in a low-speed, vertical axis mixer. Chem. Eng. Sci. 101, 144–164 (2013)

    Article  Google Scholar 

  21. Ketterhagen, W.R., Bharadwaj, R., Hancock, B.C.: The coefficient of rolling resistance (CoRR) of some pharmaceutical tablets. Int. J. Pharm. 392(1), 107–110 (2010)

    Article  Google Scholar 

  22. Minkin, L., Sikes, D.: Coefficient of rolling friction - lab experiment. Am. J. Phys. 86(1), 77–78 (2018)

    Article  ADS  Google Scholar 

  23. Podczeck, F., Rahman, S.R., Newton, J.M.: Evaluation of a standardised procedure to assess the shape of pellets using image analysis. Int. J. Pharm. 192(2), 123–138 (1999)

    Article  Google Scholar 

  24. Tripathi, A., Kumar, V., Agarwal, A., Tripathi, A., Basu, S., Chakrabarty, A., Nag, S.: Quantitative DEM simulation of pellet and sinter particles using rolling friction estimated from image analysis. Powder Technol. 380, 288–302 (2021)

    Article  Google Scholar 

  25. Wei, H., Nie, H., Li, Y., Saxén, H., He, Z., Yu, Y.: Measurement and simulation validation of DEM parameters of pellet, sinter and coke particles. Powder Technol. 364, 593–603 (2020)

    Article  Google Scholar 

  26. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012)

    Article  Google Scholar 

  27. Wensrich, C.M., Katterfeld, A., Sugo, D.: Characterisation of the effects of particle shape using a normalised contact eccentricity. Granul. Matter 26(3), 327–337 (2014)

    Article  Google Scholar 

  28. Xu, Y., Yung, K.L., Ko, S.M.: A classroom experiment to measure the speed-dependent coefficient of rolling friction. Am. J. Phys. 75(6), 571–574 (2007)

    Article  ADS  Google Scholar 

  29. Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., Yu, A.B.: Rolling friction in the dynamic simulation of sandpile formation. Physica A 269(2), 536–553 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding received from TATA Steel Ltd. for this study through the research grant TATAST/CHE/2016141 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Tripathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Tripathi, A., Tripathi, A. et al. Rolling friction measurement of slightly non-spherical particles using direct experiments and image analysis. Granular Matter 23, 60 (2021). https://doi.org/10.1007/s10035-021-01124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01124-3

Keywords

Navigation