Skip to main content
Log in

Generic spiral spin liquids

  • Topical review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Spiral spin liquids are unique classical spin liquids that occur in many frustrated spin systems, but do not comprise a new phase of matter. Owing to extensive classical ground-state degeneracy, the spins in a spiral spin liquid thermally fluctuate cooperatively from a collection of spiral configurations at low temperatures. These spiral propagation wavevectors form a continuous manifold in reciprocal space, i.e., a spiral contour or a spiral surface, that strongly governs the low-temperature thermal fluctuations and magnetic physics. In this paper, the relevant spin models conveying the spiral spin liquid physics are systematically explored and the geometric origin of the spiral manifold is clarified in the model construction. The spiral spin liquids based on the dimension and the codimension of the spiral manifold are further clarified. For each class, the physical properties are studied both generally and for specific examples. The results are relevant to a wide range of frustrated magnets. A survey of materials is given and future experiments are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010)

    Article  ADS  Google Scholar 

  2. L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80, 016502 (2016)

    Article  ADS  Google Scholar 

  3. P. A. Lee, From high temperature superconductivity to quantum spin liquid: Progress in strong correlation physics, Rep. Prog. Phys. 71, 012501 (2007)

    Article  ADS  Google Scholar 

  4. Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. Kohama, H. Ishikawa, A. Matsuo, K. Kindo, N. Shannon, and Z. Hiroi, Possible observation of quantum spinnematic phase in a frustrated magnet, Proc. Nat. Acad. Sci. 116, 10686 (2019)

    Article  ADS  Google Scholar 

  6. A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets, Nature Phys. 3, 487 (2007)

    Article  ADS  Google Scholar 

  8. S. Lee and L. Balents, Theory of the ordered phase in A-site antiferromagnetic spinels, Phys. Rev. B 78, 144417 (2008)

    Article  ADS  Google Scholar 

  9. L. Seabra, P. Sindzingre, T. Momoi, and N. Shannon, Novel phases in a square-lattice frustrated ferromagnet: 13-magnetization plateau, helicoidal spin liquid, and vortex crystal, Phys. Rev. B 93, 085132 (2016)

    Article  ADS  Google Scholar 

  10. T. Shimokawa, T. Okubo, and H. Kawamura, Multiple-q states of the J1-J2 classical honeycomb-lattice Heisenberg antiferromagnet under a magnetic field, Phys. Rev. B 100, 224404 (2019)

    Article  ADS  Google Scholar 

  11. S. Gao, O. Zaharko, V. Tsurkan, Y. Su, J. S. White, G. S. Tucker, B. Roessli, F. Bourdarot, R. Sibille, D. Chernyshov, T. Fennell, A. Loidl, and C. Rüegg, Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4, Nature Phys. 13, 157 (2016)

    Article  ADS  Google Scholar 

  12. T. Shimokawa and H. Kawamura, Ripple state in the frustrated honeycomb-lattice antiferromagnet, Phys. Rev. Lett. 123, 057202 (2019)

    Article  ADS  Google Scholar 

  13. S. Gao, H. D. Rosales, F. A. Gomez Albarracn, V. Tsurkan, G. Kaur, T. Fennell, P. Steens, M. Boehm, P. Cermak, A. Schneidewind, et al., Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings, Nature 586, 37 (2020)

    Article  ADS  Google Scholar 

  14. X. Bai, J. A. M. Paddison, E. Kapit, S. M. Koohpayeh, J.-J. Wen, S. E. Dutton, A. T. Savici, A. I. Kolesnikov, G. E. Granroth, C. L. Broholm, J. T. Chalker, and M. Mourigal, Magnetic excitations of the classical spin liquid MgCr2O4, Phys. Rev. Lett. 122, 097201 (2019)

    Article  ADS  Google Scholar 

  15. M. M. Bordelon, C. Liu, L. Posthuma, E. Kenney, M. J. Graf, N. P. Butch, A. Banerjee, S. Calder, L. Balents, and S. D. Wilson, Frustrated Heisenberg J1-J2 model within the stretched diamond lattice of LiYbO2, arXiv: 2009.04043 (2020)

  16. S. Biswas and K. Damle, Semiclassical theory for liquidlike behavior of the frustrated magnet Ca10Cr7O28, Phys. Rev. B 97, 115102 (2018)

    Article  ADS  Google Scholar 

  17. R. Pohle, H. Yan, and N. Shannon, How many spin liquids are there in Ca10Cr7O28? arXiv: 1711.03778 (2017)

  18. A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti, Spiral order by disorder and lattice nematic order in a frustrated heisenberg antiferromagnet on the honeycomb lattice, Phys. Rev. B 81, 214419 (2010)

    Article  ADS  Google Scholar 

  19. P. Balla, Y. Iqbal, and K. Penc, Ane lattice construction of spiral surfaces in frustrated Heisenberg models, Phys. Rev. B 100, 140402 (2019)

    Article  ADS  Google Scholar 

  20. P. Balla, Y. Iqbal, and K. Penc, Degenerate manifolds, helimagnets, and multi-Q chiral phases in the classical Heisenberg antiferromagnet on the face-centered-cubic lattice, Phys. Rev. Res. 2, 043278 (2020)

    Article  Google Scholar 

  21. N. Niggemann, M. Hering, and J. Reuther, Classical spiral spin liquids as a possible route to quantum spin liquids, J. Phys.: Condens. Matter 32, 024001 (2019)

    ADS  Google Scholar 

  22. Z. Nussinov, Commensurate and incommensurate o(n) spin systems: Novel even-odd eects, a generalized merminwagner-coleman theorem, and ground states, arXiv: 0105253 (2004)

  23. J. Attig and S. Trebst, Classical spin spirals in frustrated magnets from free-fermion band topology, Phys. Rev. B 96, 085145 (2017)

    Article  ADS  Google Scholar 

  24. J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, Order as an eect of disorder, Journal de Physique 41, 1263 (1980)

    Article  Google Scholar 

  25. C. L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet, Phys. Rev. Lett. 62, 2056 (1989)

    Article  ADS  Google Scholar 

  26. J. N. Reimers and A. J. Berlinsky, Order by disorder in the classical Heisenberg Kagomé antiferromagnet, Phys. Rev. B 48, 9539 (1993)

    Article  ADS  Google Scholar 

  27. K. Hukushima and K. Nemoto, Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Japan 65, 1604 (1996)

    Article  ADS  Google Scholar 

  28. N. Tristan, J. Hemberger, A. Krimmel, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl, Geometric frustration in the cubic spinels M Al2O4 (M = Co, Fe, and Mn), Phys. Rev. B 72, 174404 (2005)

    Article  ADS  Google Scholar 

  29. T. Suzuki, H. Nagai, M. Nohara, and H. Takagi, Melting of antiferromagnetic ordering in spinel oxide CoAl2O4, J. Phys.: Condens. Matter 19, 145265 (2007)

    ADS  Google Scholar 

  30. V. Fritsch, J. Hemberger, N. Büttgen, E.-W. Scheidt, H.-A. Krug von Nidda, A. Loidl, and V. Tsurkan, Spin and orbital frustration in MnSc2S4 and FeSc2S4, Phys. Rev. Lett. 92, 116401 (2004)

    Article  ADS  Google Scholar 

  31. O. Zaharko, N. B. Christensen, A. Cervellino, V. Tsurkan, A. Maljuk, U. Stuhr, C. Niedermayer, F. Yokaichiya, D. N. Argyriou, M. Boehm, and A. Loidl, Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4, Phys. Rev. B 84, 094403 (2011)

    Article  ADS  Google Scholar 

  32. Y. Iqbal, T. Müller, H. O. Jeschke, R. Thomale, and J. Reuther, Stability of the spiral spin liquid in MnSc2S4, Phys. Rev. B 98, 064427 (2018)

    Article  ADS  Google Scholar 

  33. J. R. Chamorro, L. Ge, J. Flynn, M. A. Subramanian, M. Mourigal, and T. M. McQueen, Frustrated spin one on a diamond lattice in NiRh2O4, Phys. Rev. Mater. 2, 034404 (2018)

    Article  Google Scholar 

  34. L. Ge, J. Flynn, J. A. M. Paddison, M. B. Stone, S. Calder, M. A. Subramanian, A. P. Ramirez, and M. Mourigal, Spin order and dynamics in the diamond-lattice Heisenberg antiferromagnets CuRh2O4 and CoRh2O4, Phys. Rev. B 96, 064413 (2017)

    Article  ADS  Google Scholar 

  35. G. Chen, Quantum paramagnet and frustrated quantum criticality in a spin-one diamond lattice antiferromagnet, Phys. Rev. B 96, 020412 (2017)

    Article  ADS  Google Scholar 

  36. F. L. Buessen, M. Hering, J. Reuther, and S. Trebst, Quantum spin liquids in frustrated spin-1 diamond antiferro-magnets, Phys. Rev. Lett. 120, 057201 (2018)

    Article  ADS  Google Scholar 

  37. F.-Y. Li and G. Chen, Spin-orbital entanglement in d8 Mott insulators: Possible excitonic magnetism in diamond lattice antiferromagnets, Phys. Rev. B 100, 045103 (2019)

    Article  ADS  Google Scholar 

  38. S. Das, D. Nafday, T. Saha-Dasgupta, and A. Paramekanti, NiRh2O4: A spin-orbit entangled diamond-lattice paramagnet, Phys. Rev. B 100, 140408 (2019)

    Article  ADS  Google Scholar 

  39. S. A. Nikolaev, I. V. Solovyev, A. N. Ignatenko, V. Y. Irkhin, and S. V. Streltsov, Realization of the anisotropic compass model on the diamond lattice of Cu2+ in CuAl2O4, Phys. Rev. B 98, 201106 (2018)

    Article  ADS  Google Scholar 

  40. X.-P. Yao, C.-J. Huang, C. Liu, F.-Y. Li, and G. Chen, The eects of spin-orbit coupling in diamond lattice magnets: A study of heisenberg-compass model on a diamond lattice (2020) (in preparation)

  41. J. G. Cheng, G. Li, L. Balicas, J. S. Zhou, J. B. Goodenough, C. Xu, and H. D. Zhou, High-pressure sequence of Ba3NiSb2O9 structural phases: New S = 1 quantum spin liquids based on Ni2+, Phys. Rev. Lett. 107, 197204 (2011)

    Article  ADS  Google Scholar 

  42. G. Chen, M. Hermele, and L. Radzihovsky, Frustrated quantum critical theory of putative spin-liquid phenomenology in 6H-B-Ba3NiSb2O9, Phys. Rev. Lett. 109, 016402 (2012)

    Article  ADS  Google Scholar 

  43. S. Okumura, H. Kawamura, T. Okubo, and Y. Motome, Novel spin-liquid states in the frustrated Heisenberg antiferromagnet on the honeycomb lattice, J. Phys. Soc. Japan 79, 114705 (2010)

    Article  ADS  Google Scholar 

  44. M. Matsuda, M. Azuma, M. Tokunaga, Y. Shimakawa, and N. Kumada, Disordered ground state and magnetic eld-induced long-range order in an S = 3/2 antiferromagnetic honeycomb lattice compound Bi3Mn4O12(NO3), Phys. Rev. Lett. 105, 187201 (2010)

    Article  ADS  Google Scholar 

  45. T. A. Sedrakyan, L. I. Glazman, and A. Kamenev, Spontaneous formation of a nonuniform chiral spin liquid in a moat-band lattice, Phys. Rev. Lett. 114, 037203 (2015)

    Article  ADS  Google Scholar 

  46. S. Jiang, L. Zou, and W. Ku, Non-Fermi-liquid scattering against an emergent Bose liquid: Manifestations in the kink and other exotic quasiparticle behavior in the normal-state cuprate superconductors, Phys. Rev. B 99, 104507 (2019)

    Article  ADS  Google Scholar 

  47. Z. Wang, C. Navarrete-Benlloch, and Z. Cai, Pattern formation and exotic order in driven-dissipative Bose-Hubbard systems, Phys. Rev. Lett. 125, 115301 (2020)

    Article  ADS  Google Scholar 

  48. J.-S. Bernier, M. J. Lawler, and Y. B. Kim, Quantum order by disorder in frustrated diamond lattice antiferromagnets, Phys. Rev. Lett. 101, 047201 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fei-Ye Li and Dr. Xiao-Tian Zhang for useful discussions. This work was supported by the Ministry of Science and Technology of China (Grant Nos. 2018YFE0103200, 2016YFA0300500, and 2016YFA0301001), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX04), and the Research Grants Council of Hong Kong with General Research Fund (Grant No. 17306520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/sll467-021-1074-9.

arXiv: 2011.03007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, XP., Liu, J.Q., Huang, CJ. et al. Generic spiral spin liquids. Front. Phys. 16, 53303 (2021). https://doi.org/10.1007/s11467-021-1074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1074-9

Keywords

Navigation