Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 20, 2021

First principles study of the structural, electronic, optical and thermodynamic properties of cubic quaternary AlxIn1−xPyBi1−y alloys

  • Ahmed Abdiche EMAIL logo , M’hamed Guemou , Rabah Moussa , Fethi Soyalp and Rabah Khenata

Abstract

The non-relativistic full potential linearized augmented plane wave (FP LAPW) method was applied to investigate the structural, electronic, optical and thermodynamic properties of (ZB)-AlP, AlBi, InP and InBi compounds and their ternary AlxIn1−xP, AlxIn1−xBi, AlPxBi1−x and InPxBi1−x and the ordered AlxIn1−xPyBi1−y quaternary alloys. For the exchange-correlation potential, the LDA, GGA and WC-GGA have been used to calculate structural parameters. The TB-mBJ approximation was used to compute the band structures. Our results for binary compound agree well with available data found in literature. The lattice constants and the bulk modulus versus compositions x and y deviate from the linearity. All quaternary alloys are semiconductors with direct band gap with the exception for Al0.25In0.75P0.25Bi0.75 and Al0.25In0.75P0.50Bi0.50, which exhibit a half metallic character (the band gap tends to zero). Furthermore, the optical properties such as the dielectric constants, refractive index, absorption, reflectivity and the energy loss have been calculated and analysed in the energy range varying from 0 to 14 eV. At the end, we have investigated some thermodynamic properties, where the lattice constants, the Debye temperature θD, the heat capacity CV and the entropy S were carried out, plotted and discussed.


Corresponding author: Ahmed Abdiche, Department of Electrical Engineering, University of Tiaret, Tiaret14000, Algeria; and Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara29000, Algerie, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] F. Annane, H. Meradji, S. Ghemid, and F. El Hadj hassan, “First principle investigation of AlAs and AlP compounds and ordered AlAs1−xPx alloys,” Comput. Mater. Sci., vol. 50, pp. 274–278, 2010. https://doi.org/10.1016/j.commatsci.2010.08.014.Search in Google Scholar

[2] M. Merabet, D. Rached, S. Benalia, et al.., “Half-metallic ferromagnetism in Al1−xCrxP and superlattices (AlP)n/(CrP) m by density functional calculations,” Superlattice. Microst., vol. 65, pp. 65195–65205, 2014.10.1016/j.spmi.2013.10.037Search in Google Scholar

[3] R. Alaya, S. Salma, M. Hashassi, M. Barkia, and R. S. Alaya, “Theoretical predictions of structural, electronic, and optical properties of dilute bismide AlN1−xBix in zinc-blend structures,” Elec. Mat, vol. 46, pp. 1977–1983, 2017. https://doi.org/10.1007/s11664-017-5318-y.Search in Google Scholar

[4] S. Kumar, S. S. Parashari, and S. Auluck, “Disorder effects on electronic and optical properties of the ternary GaxIn1−xP (x = 0.25, 0.50, and 0.75) alloy. “Phys. Status Solidi B, vol. 246, pp. 2197–2404, 2009. https://doi.org/10.1002/pssb.200945016.Search in Google Scholar

[5] E. Ribeiro, R. L. Maltez, W. Carvalho, D. UgarteJr., and G. Medeiros-Ribeiro, “Optical and structural properties of InAsP ternary self-assembled quantum dots embedded in GaAs,” Appl. Phys. Lett., vol. 81, p. 2953, 2002. https://doi.org/10.1063/1.1513215.Search in Google Scholar

[6] D. P. Samajdar and S. Dhar, “Valence band structure of InAs1−xBix and InSb1−xBix alloy semiconductors calculated using valence band anticrossing model.” J. Sientific .World, vol. 2014, p. 704830, 2014. https://doi.org/10.1155/2014/704830.Search in Google Scholar

[7] A. Abdiche, H. Abid, R. Riane, and A. Bouaza, “Structural and electronic properties of zinc blend GaAs1−xBix solid solutions,” Phys. B, vol. 405, pp. 2311–2316, 2010. https://doi.org/10.1016/j.physb.2010.02.034.Search in Google Scholar

[8] k. Schwarz and P. Blaha, “Solid state calculations using WIEN2k,” Comput. Mater. Sci., vol. 28, pp. 259–273, 2003. https://doi.org/10.1016/s0927-0256(03)00112-5.Search in Google Scholar

[9] R. Dreizler and E. K. U. Gross, Density-Functional Theory, New York, Springer, 1995.10.1007/978-1-4757-9975-0Search in Google Scholar

[10] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Austria, Karlheinz Schwarz, Techn. Universitat Wien, 2001.Search in Google Scholar

[11] J. Perdew, S. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 78, p. 3865, 1997. https://doi.org/10.1103/physrevlett.78.1396.Search in Google Scholar

[12] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B, vol. 45, p. 13244, 1992. https://doi.org/10.1103/physrevb.45.13244.Search in Google Scholar

[13] Z. Wu and R. E. Cohen, “More accurate generalized gradient approximation for solids.” Phys. Rev. B, vol. 73, p. 235116, 2006. https://doi.org/10.1103/physrevb.73.235116.Search in Google Scholar

[14] F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential.” Phys. Rev. Lett., vol. 102, p. 226401, 2009. https://doi.org/10.1103/physrevlett.102.226401.Search in Google Scholar

[15] M. S. Hybertsen and S. G. Louie, “Model dielectric matrices for quasiparticle self-energy calculations,” Phys. Rev. B, vol. 37, p. 2733, 1988. https://doi.org/10.1103/physrevb.37.2733.Search in Google Scholar

[16] F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proc. Natl. Acad. Sci. U.S.A., vol. 30, p. 244, 1944.10.1073/pnas.30.9.244Search in Google Scholar PubMed PubMed Central

[17] M. Briki, M. Abdelouhab, A. Zaoui, and M. Ferhat, “Relativistic effects on the structural and transport properties of III-V compounds: a first-principles study,” Superlattice. Microst., vol. 45, p. 80, 2009. https://doi.org/10.1016/j.spmi.2008.12.022.Search in Google Scholar

[18] R. Ahmed, Fazal-e-Aleem, S. J. Hashemifar, and H. Akbarzadeh, “First-principles study of the structural and electronic properties of III-phosphides,” Phys. B, vol. 403, p. 1876, 2008. https://doi.org/10.1016/j.physb.2007.10.342.Search in Google Scholar

[19] V. Khanin and S. E. Kul’kova, “Electronic Properties of III–V Semiconductors,” Russ. Phys. J., vol. 48, p. 61, 2005. https://doi.org/10.1007/s11182-005-0086-1.Search in Google Scholar

[20] K. H. Hellwege and O. Madelung, Landolt- Bornstein, Semiconductors: (Physics of Group IV Elements and III–V Compounds), New Series, Group III, Pt. a, vol. 17, Berlin, Springer-Verlag, 1982, p. 602.Search in Google Scholar

[21] W. Shen and A. Zunger, “Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: chemical trends,” Phys. Rev. B, vol. 60, p. 5404, 1999.10.1103/PhysRevB.60.5404Search in Google Scholar

[22] O. Madelung and L. Bornstein, Semiconductors, Physics of Group IV Elements and III-V Compounds, New Series, Group III, Vol. 17, Berlin, Springer-Verlag, 1982.Search in Google Scholar

[23] S. Adachi, Properties of Group III–V and II–VI Semiconductor, West Sussex, England, Wiley, 2005.10.1002/0470090340Search in Google Scholar

[24] M. Merabet, S. Benalia, S. D. Rached, et al.., “Structural and electronic properties of bulk GaP and AlP and their superlattices,” Superlattice. Microst., vol. 49, p. 132, 2011. https://doi.org/10.1016/j.spmi.2010.11.012.Search in Google Scholar

[25] R. Moussa, A. Abdiche, R. Khenata, et al.., “Studying structural, electronic and optical properties of zinc-blende Ga1−xAlxP at normal and under pressure by means of first principle,” Mater. Res. Express, vol. 2, p. 105904, 2015. https://doi.org/10.1088/2053-1591/2/10/105904.Search in Google Scholar

[26] R. H. Jappor, M. A. Abdulsattar, and A. M. Abdul-lettif, “Electronic structure of AlP under pressure using semiempirical method,” Condens. Matter Phys., vol. 3, pp. 1–7, 2010. https://doi.org/10.2174/1874186x01003010001.Search in Google Scholar

[27] I. Vurgaftman, J. R. Meyer, and J. Ram-Mohan Appl. Phys., vol. 89, p. 5844, 2001. https://doi.org/10.1063/1.1368156.Search in Google Scholar

[28] A. Mujica, P. Rodríguez-Hernández, S. Radescu, R. J. Needs, and A. Muñoz, “AlX (X = As, P, Sb) compounds under pressure,” Phys. Status Solidi B, vol. 211, pp. 39–43, 1999.10.1002/(SICI)1521-3951(199901)211:1<39::AID-PSSB39>3.0.CO;2-NSearch in Google Scholar

[29] M. Causa and A. Zupan, “Density functional LCAO calculation of periodic systems. A posteriori correction of the Hartree–Fock energy of covalent and ionic crystals,” Chem. Phys. Lett., vol. 220, pp. 145–52, 1994. https://doi.org/10.1016/0009-2614(94)00179-0.Search in Google Scholar

[30] A. Zaoui, D. Madouri, and M. Ferhat, “First-principles study of the ground state stability of III–V bismuth compounds,” Phil. Mag. Lett., vol. 89, pp. 807–813, 2009. https://doi.org/10.1080/09500830903304125.Search in Google Scholar

[31] N. A. Abdul Rahim, R. Ahmed, B. Ul Haq, et al.., “Computational modeling and characterization of X–Bi (X = B, Al, Ga, In) compounds: prospective optoelectronic materials for infrared/near infra applications,” Comput. Mater. Sci., vol. 114, pp. 40–46, 2016. https://doi.org/10.1016/j.commatsci.2015.11.043.Search in Google Scholar

[32] S. Q. Wang and H. Q. Ye, “Plane-wave pseudopotential study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure,” Phys. Rev. B, vol. 66, p. 235111, 2002. https://doi.org/10.1103/physrevb.66.235111.Search in Google Scholar

[33] M. Ferhat and A. Zaoui, “Structural and electronic properties of III-V bismuth compounds,” Phys. Rev. B, vol. 73, p. 115107, 2006. https://doi.org/10.1103/physrevb.73.115107.Search in Google Scholar

[34] M. Mbarki, R. Alaya, and A. Rebey, “Ab initio investigation of structural and electronic properties of zinc blende AlN1-x Bix alloys,” Solid State Commun., vol. 155, pp. 1–92, 2013. https://doi.org/10.1016/j.ssc.2012.10.031.Search in Google Scholar

[35] A. J. Shalindar, P. T. Webster, B. J. Wilkens, T. L. Alford, and S. R. Johnson, “Measurement of InAsBi mole fraction and InBi lattice constant using Rutherford backscattering spectrometry and x-ray diffraction,” J. Appl. Phys., vol. 120, p. 145704, 2016. https://doi.org/10.1063/1.4964799.Search in Google Scholar

[36] M. Guemou, B. Bouhafs, A. Abdiche, R. Khenata, Y. Al Douri, and S. Bin Omran, “First-principles calculations of the structural, electronic and optical properties of cubic BxGa1−xAs alloys,” Phys. B, vol. 407, p. 1292, 2012. https://doi.org/10.1016/j.physb.2012.01.132.Search in Google Scholar

[37] L. Vegard, “Die konstitution der mischkristalle und die raumfüllung der atome,” Z. Phys., vol. 5, p. 17, 1921. https://doi.org/10.1007/bf01349680.Search in Google Scholar

[38] B. G. Yalcin, S. Bagci, M. Ustundag, and M. Aslan, “Electronic and optical properties of BBi and AlBi: hybrid (YS-PBE0) function,” Comput. Mater. Sci., vol. 98, p. 136, 2015. https://doi.org/10.1016/j.commatsci.2014.11.010.Search in Google Scholar

[39] W. A. Harrison, Electronic Structure and the Properties of Solids, San Francisco, Freeman, 1980.Search in Google Scholar

[40] K. A. Johnson, “Corrections to density-functional theory band gaps,” Phys. Rev. B, vol. 58, pp. 15548–15556, 1998. https://doi.org/10.1103/physrevb.58.15548.Search in Google Scholar

[41] R. W. Jansen and O. F. Sankey, “Ab initio linear combination of pseudo-atomic-orbital scheme for the electronic properties of semiconductors: results for ten materials,” Phys. Rev. B, vol. 36, p. 6520, 1987. https://doi.org/10.1103/physrevb.36.6520.Search in Google Scholar

[42] S. Z. Karazhanov and L. C. Lew Yan Voon, “Ab initio studies of the band parameters of III–V and II–VI zinc-blende semiconductors,” Semiconductors, vol. 39, pp. 161–173, 2005. https://doi.org/10.1134/1.1864192.Search in Google Scholar

[43] S. M. Sze and K. K. Ng, Physics of Semiconductor Device, New York, Wiley Interscience Publ., 1981, p. 848.Search in Google Scholar

[44] R. W. G. Wyckoff, Crystal Structures, 2nd ed., Malabar, Krieger, 1986.Search in Google Scholar

[45] E. Burstein, M. H. Brodsky, and G. Lucovsky, “Structural and Electronic Properties of Ternary AlxIn1−x P Alloys,” Int. J. Quant. Chem., vol. 1, p. 756, 1987.Search in Google Scholar

[46] S. Q. Wang and H. Q. Ye, “Plane-wave pseudopotential study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure,” Phys. Rev. B, vol. 66, p. 235111, 2002. https://doi.org/10.1103/physrevb.66.235111.Search in Google Scholar

[47] S. N. Rashkeev and W. R. L. Lambrecht, “Second-harmonic generation of I-III-VI 2 chalcopyrite semiconductors: Effects of chemical substitutions,” Phys. Rev. B, vol. 63, p. 165212, 2001. https://doi.org/10.1103/physrevb.63.165212.Search in Google Scholar

[48] G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys., vol. 74, p. 601, 2002. https://doi.org/10.1103/revmodphys.74.601.Search in Google Scholar

[49] T. S. Moss, “A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors,” Proc. Phys. Soc., London B, vol. 63, p. 167, 1950. https://doi.org/10.1088/0370-1301/63/3/302.Search in Google Scholar

[50] N. M. Ravindra, S. Auluck, and V. K. Srivastava Phys. Status Solid B, vol. 93, p. 155, 1979. https://doi.org/10.1002/pssb.2220930257.Search in Google Scholar

[51] P. Herve and L. K. J. Vandamme, “General relation between refractive index and energy gap in semiconductors,” Infrared Phys. Technol., vol. 35, p. 609, 1994. https://doi.org/10.1016/1350-4495(94)90026-4.Search in Google Scholar

[52] R. R. Reddy, Y. Nazeer, Ahammed, K. Rama Gopal, and D. V. Raghuram, “Optical electronegativity and refractive index of materials,” Opt. Mater., vol. 10, pp. 95–100, 1998. https://doi.org/10.1016/s0925-3467(97)00171-7.Search in Google Scholar

[53] D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B, vol. 27, p. 985, 1983. https://doi.org/10.1103/physrevb.27.985.Search in Google Scholar

[54] M. Z. Huang and W. Y. Ching, “Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response,” Phys. Rev. B, vol. 47, p. 15, 1993.10.1103/PhysRevB.47.9449Search in Google Scholar

[55] W. A. Harrison, Structure and the Properties of Solids, San Francisco, Freeman, 1980.Search in Google Scholar

[56] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, p. 5188, 1976. https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

[57] F. Peng, H. Z. Fu, and X. D. Yang Phys. B, vol. 403, p. 285, 2008. https://doi.org/10.1016/j.physb.2008.02.022.Search in Google Scholar

[58] M. A. Blanco, E. Francisco, and V. Luana, “GIBBS: isothermal–isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model,” Comput. Phys. Commun., vol. 158, p. 57, 2004. https://doi.org/10.1016/j.comphy.2003.12.001.Search in Google Scholar

[59] A. T. Petit and P. L. Dulong, “Recherches sur quelques points importans de la théorie de la chaleur,” Ann. Chem. Phys., vol. 10, p. 395, 1819.Search in Google Scholar

Received: 2020-12-15
Revised: 2021-02-06
Accepted: 2021-03-09
Published Online: 2021-04-20
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2020-0340/html
Scroll to top button