Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 5, 2021

Utilization of nanotechnology in targeted radionuclide cancer therapy: monotherapy, combined therapy and radiosensitization

  • Noha Anwer Bayoumi EMAIL logo and Mohamed Taha El-Kolaly
From the journal Radiochimica Acta

Abstract

The rapid progress of nanomedicine field has a great influence on the different tumor therapeutic trends. It achieves a potential targeting of the therapeutic agent to the tumor site with neglectable exposure of the normal tissue. In nuclear medicine, nanocarriers have been employed for targeted delivery of therapeutic radioisotopes to the malignant tissues. This systemic radiotherapy is employed to overcome the external radiation therapy drawbacks. This review overviews studies concerned with investigation of different nanoparticles as promising carriers for targeted radiotherapy. It discusses the employment of different nanovehicles for achievement of the synergistic effect of targeted radiotherapy with other tumor therapeutic modalities such as hyperthermia and photodynamic therapy. Radiosensitization utilizing different nanosensitizer loaded nanoparticles has also been discussed briefly as one of the nanomedicine approach in radiotherapy.


Corresponding author: Noha Anwer Bayoumi, Department of Radiolabeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Saha, G. B. Fundamentals of Nuclear Pharmacy, 6th ed.; Springer-Verlag: New York, 2010; p. 577.10.1007/978-1-4419-5860-0Search in Google Scholar

2. Gudkov, S., Shilyagina, N., Vodeneev, V., Zvyagin, A. Targeted radionuclide therapy of human tumors. Int. J. Mol. Sci. 2016, 17, 33.10.3390/ijms17010033Search in Google Scholar PubMed PubMed Central

3. Nitipir, C., Niculae, D., Orlov, C., Barbu, M., Popescu, B., Popa, A., Pantea, A., Stanciu, A., Galateanu, B., Ginghina, O., Papadakis, G., Izotov, B., Spandidos, D., Tsatsakis, A., Negre, C. Update on radionuclide therapy in oncology. Oncol. Lett. 2017, 14, 7011; https://doi.org/10.3892/ol.2017.7141.Search in Google Scholar

4. Yeong, C. H., Cheng, M., Ng, K. H. Therapeutic radionuclides in nuclear medicine: current and future prospects. J. Zhejiang Univ.-Sci. B 2014, 15, 845; https://doi.org/10.1631/jzus.b1400131.Search in Google Scholar

5. Larson, S., Carrasquillo, J., Cheung, N., Press, O. Radioimmunutherapy of human tumors. Nat. Rev. Cancer 2015, 15, 347; https://doi.org/10.1038/nrc3925.Search in Google Scholar

6. Bailly, C., Bodet-Milin, C., Guerard, F., Chouin, N., Gaschet, J., Cherel, M., Davodeau, F., Faivre-Chauvet, A., Kraeber-Bodere, F., Bourgeois, M. Radioimmunutherapy of Lymphomas. Nuclear Medicine Therapy; Springer: NY, USA, 2019; p. 113.10.1007/978-3-030-17494-1_8Search in Google Scholar

7. Antonio, C., Ruiz, S., de la Cruz-Merino, L., Provencio, M. Role of consolidation with yttrium-90 ibritumomab tiuxetan in patients with advanced-stage follicular lymphoma. Ther. Adv. Hematol. 2014, 5, 78.10.1177/2040620714532282Search in Google Scholar PubMed PubMed Central

8. Goldsmith, S. Radioimmunotherapy of lymphoma: Bexxar and zevalin. Semin. Nucl. Med. 2010, 40, 122; https://doi.org/10.1053/j.semnuclmed.2009.11.002.Search in Google Scholar

9. Press, O., Unger, J., Rimsza, L., Friedberg, J., LeBlanc, M., Czuczman, M., Kaminski, M., Braziel, R., Spier, C., Gopal, A. K. Phase iii randomized intergroup trial of chop plus rituximab compared with chop chemotherapy plus (131) iodine-tositumomab for previously untreated follicular non-hodgkin lymphoma. J. Clin. Oncol. 2013, 31, 314; https://doi.org/10.1200/jco.2012.42.4101.Search in Google Scholar

10. Othman, M., Verger, E., Costa, I., Tanapirakgul, M., Cooper, M., Imberti, C., Lewington, V., Blower, P., Terry, S. In vitro cytotoxicity of auger electron-emitting [67Ga] Ga-trastuzumab. Nucl. Med. Biol. 2020, 80, 57; https://doi.org/10.1016/j.nucmedbio.2019.12.004.Search in Google Scholar

11. Ballangrud, A., Yang, W., Palm, S., Enmon, R., Borchardt, P., Pellegrini, V., McDevitt, M., Scheinberg, D., Sgouros, G. Alpha- particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression. Clin. Cancer Res. 2004, 10, 4489; https://doi.org/10.1158/1078-0432.ccr-03-0800.Search in Google Scholar

12. Vaidyanathan, G., Zalutsky, M. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr. Radiopharm. 2011, 4, 283; https://doi.org/10.2174/1874471011104040283.Search in Google Scholar

13. Li, H., Morokoshi, Y., Nagatsu, K., Kamada, T., Hasegawa, S. Locoregional therapy with alpha-emitting trastuzumab against peritoneal metastasis of human epidermal growth factor receptor 2-positive gastric cancer in mice. Cancer Sci. 2017, 108, 1648; https://doi.org/10.1111/cas.13282.Search in Google Scholar

14. Chen, J., Wu, H., Han, D., Xie, C. Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett. 2006, 231, 169; https://doi.org/10.1016/j.canlet.2005.01.024.Search in Google Scholar

15. Li, L., Wartchow, C., Danthi, S., Shen, Z., Dechene, N., Pease, J., Choi, H., Doede, T., Chu, P., Ning, S., Lee, D., Bednarski, M., Knox, S. A novel antiangiogenesis therapy using an integrin or anti-FLK-1 antibody cotated 90Y-labeled nanoparticles. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 1215; https://doi.org/10.1016/j.ijrobp.2003.10.057.Search in Google Scholar

16. Razumienko, E., Chen, J., Cai, Z., Chan, C., Reilly, R. Dual receptor targeted radioimmunotherapy of human breast cancer xenografts in atheymic mice coexpressing HER2 and EGFR using 177Lu- or 111In- labeled bispecific radioimmunoconjugates. J. Nucl. Med. 2016, 57, 444. https://doi.org/10.2967/jnumed.115.162339.Search in Google Scholar

17. Zhang, L., Chen, H., Wang, L., Liu, T., Yeh, J., Lu, G., Yang, L., Mao, H. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol. Sci. Appl. 2010, 3, 159; https://doi.org/10.2147/nsa.s7462.Search in Google Scholar

18. Lozza, C., Navarro-Teulon, I., Pèlegrin, A., Pouget, J. EricVivès: peptides in receptor-mediated radiotherapy: from design to the clinical application in cancers. Front. Oncol. 2013, 3, 1; https://doi.org/10.3389/fonc.2013.00247.Search in Google Scholar

19. Wilkes, B. C., Hruby, V. J., Yamamura, H. I., Akiyama, K., Castrucci, A. M., Hadley, M. E. Synthesis of tritium labeled Ac-[Nle4, DPhe7]-alpha-MSH4-11-NH2: a super potent melanotropin with prolonged biological activity. Life Sci. 1984, 34, 977; https://doi.org/10.1016/0024-3205(84)90302-3.Search in Google Scholar

20. Eberle, A. N., Mild, G. Receptor mediated tumor targeting with radiopeptides. Part 1. General principles and methods. J. Recept. Signal Transduct. Res. 2009, 29, 1; https://doi.org/10.1080/10799890902732823.Search in Google Scholar

21. Ferreira, C. L., Yapp, D. T., Crisp, S., Sutherland, B. W., Ng, S. S., Gleave, M. Comparison of bifunctional chelates for 64Cu antibody imaging. Eur. J. Nucl. Med. Mol. Imag. 2010, 37, 2117; https://doi.org/10.1007/s00259-010-1506-1.Search in Google Scholar

22. Sun, X., Wuest, M., Weisman, G. R., Wong, E. H., Reed, D. P., Boswell, C. A. Radiolabeling and in vivo behavior of copper-64-labeled crossbridged cyclam ligands. J. Med. Chem. 2002, 45, 469; https://doi.org/10.1021/jm0103817.Search in Google Scholar

23. Liu, S., Li, D., Huang, C. W., Yap, L. P., Park, R., Shan, H. The efficient synthesis and biological evaluation of novel bi-functionalized sarcophagine for 64Cu radiopharmaceuticals. Theranostics 2012, 2, 589; https://doi.org/10.7150/thno.4295.Search in Google Scholar

24. Murthy, S. K. Nanoparticles in modern medicine: state of the art and future challenge. Int. J. Nanomed. 2007, 2, 129.Search in Google Scholar

25. Mi1, Y., Shao, Z., Vang, J., Kaidar-Person1, O., Wang, A. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol. 2016, 7, 11; https://doi.org/10.1186/s12645-016-0024-7.Search in Google Scholar

26. Huang, X., El-sayed, M. A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13; https://doi.org/10.1016/j.jare.2010.02.002.Search in Google Scholar

27. Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010, 624, 25; https://doi.org/10.1007/978-1-60761-609-2_3.Search in Google Scholar

28. Stylianopoulos, T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther. Deliv. 2013, 4, 421; https://doi.org/10.4155/tde.13.8.Search in Google Scholar

29. Lamb, J., Holland, J. Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J. Nucl. Med. 2018, 59, 382; https://doi.org/10.2967/jnumed.116.187419.Search in Google Scholar

30. Chang, C., Chen, C., Lee, Y. PEGylated liposome-encapsulated rhenium-188 radiopharmaceutical inhibits proliferation and epithelial-mesenchymal transition of human head and neck cancer cells in vivo with repeated therapy. Cell Death Discov. 2018, 4, 100; https://doi.org/10.1038/s41420-018-0116-8.Search in Google Scholar

31. Chen, M., Chang, C., Chang, Y., Chen, L., Yu, C., Wu, Y., Lee, W., Yeh, C., Lin, F., Lee, T. Micro SPECT/CT imaging and pharmacokinetics of 188Re-(DXR)-liposome in human colorectal adenocarcinoma-bearing mice. Anticancer Res. 2010, 30, 65.Search in Google Scholar

32. Colasanti, A., Kisslinger, A., Quarto, M., Riccio, P. Combined effects of radiotherapy and photodynamic therapy on an in vitro human prostate model. Acta Biochim. Pol. 2004, 51, 1039.Search in Google Scholar

33. Fang, J., Nakamura, H., Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136; https://doi.org/10.1016/j.addr.2010.04.009.Search in Google Scholar

34. Khoo, A., Cho, S., Reynoso, F., Aliru, M., Aziz, K., Bodd, M., Yang, X., Ahmed, M., Yasar, S., Manohar, N., Cho, J., Tailor, R., Thames, H., Krishnan, S. Radiosensitization of prostate cancers in vitro and in vivo to erbium-filtered orthovoltage X-rays using actively targeted gold nanoparticles. Sci. Rep. 2017, 7, 18044; https://doi.org/10.1038/s41598-017-18304-y.Search in Google Scholar

35. Wang, H., Yu, H., Lu, Y., Heish, N., Tseng, Y., Huang, K., Deng, W. Internal radiotherapy and dosimetric study for 111In/177Lu-pegylated liposomes conjugates in tumor- bearing mice. J Nucl. Instrum. Methods Phys. Res. 2006, 569, 533; https://doi.org/10.1016/j.nima.2006.08.124.Search in Google Scholar

36. Vanpouille-Box, C., Lacoeuille, F., Belloche, C., Lepareur, N., Lemaire, L., LeJeune, J., Hindre, F. Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with 188Re-lipid nanocapsules. Biomaterials 2011, 32, 6781; https://doi.org/10.1016/j.biomaterials.2011.05.067.Search in Google Scholar

37. Kawashima, H. Radioimmunotherapy: a specific treatment protocol for cancer by cytotoxic radioisotopes conjugated to antibodies. Sci. World J. 2014, 492061.10.1155/2014/492061Search in Google Scholar PubMed PubMed Central

38. Liu, Y., Yu, X., Sun, R., Pan, X. Folate-functionalized lipid nanoemulsion to deliver chemo-radiotherapeutics together for the effective treatment of nasopharyngeal carcinoma. AAPS PharmSciTech 2017, 18, 1374; https://doi.org/10.1208/s12249-016-0595-y.Search in Google Scholar

39. Zhang, L., Wang, H. Construction of radioactive iodine nanoparticle for active targeting and therapy of anaplastic thyroid cancer. J. Nucl. Med. 2018, 59, 1290.Search in Google Scholar

40. Dziawer, Ł., Majkowska-Pilip, A., Gaweł, D., Godlewska, M., Pruszyn´ ski, M., Jastrze˛bski, J., Wa˛s, B., Bilewicz, A. Trastuzumab-modified gold nanoparticles labeled with 211At as a prospective tool for local treatment of HER2-positive breast cancer. Nanomaterials 2019, 9, 632; https://doi.org/10.3390/nano9040632.Search in Google Scholar

41. Zhong, X., Yang, K., Dong, Z., Yi, X., Wang, Y., Ge, C., Zhao, Y., Liu, Z. Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotheraby of cancer. Adv. Funct. Mater. 2015, 25, 7327; https://doi.org/10.1002/adfm.201503587.Search in Google Scholar

42. Rossin, R., Pan, D., Qi, K. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biological evaluation. J. Nucl. Med. 2005, 46, 1210.Search in Google Scholar

43. Singh, M., Singh, K., Kumar, D. Nanomaterial applications as radiosensitizer in radiation therapy for cancer treatment. Int. Res. J. Sci. Eng., Special Iss. 2017, A1, 59.Search in Google Scholar

44. Jun, Z., Min, Z., Chun, L. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy. Cancer Nanotechnol. 2016, 7, 322.10.1186/s12645-016-0022-9Search in Google Scholar

45. Barton, K., Stricker, H., Brown, S., Elshaikh, M., Aref, I., Lu, M., Pegg, J., Zhang, Y., Karvelis, K., Siddiqui, F., Kim, J., Freytag, S., Movsas, B. Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol. Ther. 2008, 16, 1761; https://doi.org/10.1038/mt.2008.172.Search in Google Scholar

46. Peerlinck, I., Merron, A., Baril, P., Conchon, S., Deque, P., Hindorf, C., Burnet, J., Iggo, R., Lemonia, N., Hingorani, M., Vassaux, G. Targeted radionuclide therapy using a Wnt-targeted replicating adenovirus encoding the Na/I symporter. Clin. Cancer Res. 2009, 15, 6595; https://doi.org/10.1158/1078-0432.ccr-09-0262.Search in Google Scholar

47. Cheng, Y., Weng, S., Yu, L., Zhu, N., Yang, M., Yuan, Y. The role of hyper thermia in mulidisplanry treatment of malignant tumor. Integr. Cancer Ther. 2019, 18, 1; https://doi.org/10.1177/1534735419876345.Search in Google Scholar

48. Garashchenko, B., Dogadkin, N., Borisova, N., Yakovlev, R. Sorption of 223Ra and 211Pb on modified nanodiamonds for potential application in radiotherapy. J. Radioanal. Nucl. Chem. 2018, 318, 2415; https://doi.org/10.1007/s10967-018-6330-2.Search in Google Scholar

49. Li, L., Wartchow, C., Danthi, S. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk- 1 antibody coated 90Y-labeled nanoparticles. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 1215; https://doi.org/10.1016/j.ijrobp.2003.10.057.Search in Google Scholar

50. Natarajan, A., Xiong, C., Gruettner, C. Development of multivalent radioimmunonanoparticles for cancer imaging and therapy. Cancer Biother. Radiopharm. 2008, 23, 82; https://doi.org/10.1089/cbr.2007.0410.Search in Google Scholar

51. Hartman, K., Hamlin, D., Wilbur, D., Wilson, L. 211AtCl@US-tube nanocapsules: a new concept in radiotherapeutic agent design. Small 2007, 3, 1496; https://doi.org/10.1002/smll.200700153.Search in Google Scholar

52. Ming, H., Fang, L., Gao, J., Li, C., Ji, Y., Shen, Y., Hu, Y., Li, N., Chang, J., Li, W. Antitumor effect of nanoparticle 131I-labeled arginine-glycine-aspartate-bovine serum albumin-polycaprolactone in lung cancer. Am. J. Roentgenol. 2017, 208, 1116; https://doi.org/10.2214/ajr.16.16947.Search in Google Scholar

53. Li, S. D., Hung, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008, 5, 496; https://doi.org/10.1021/mp800049w.Search in Google Scholar

54. Tian, L., Chen, Q., Yi, X., Wang, G., Chen, J., Ning, P., Yang, K., Liu, Z. Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 2017, 7, 614; https://doi.org/10.7150/thno.17381.Search in Google Scholar

55. Chen, L., Zhong, X., Yi, X., Huang, M., Ning, P., Liu, T., Ge, C., Chai, Z., Liu, Z., Yang, K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio-and photothermal therapy of cancer. Biomaterials 2015, 66, 21; https://doi.org/10.1016/j.biomaterials.2015.06.043.Search in Google Scholar

56. Lin, Y., Paganetti, H., McMahon, S., Schuemann, J. Gold nanoparticle induced vasculature damage in radiotherapy: comparing protons, megavoltage photons, and kilovoltage photons. Med. Phys. 2015, 42, 5890; https://doi.org/10.1118/1.4929975.Search in Google Scholar

57. Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Le Sech, C., Lacombe, S. Platinum nanoparticles: a promising material for future cancer therapy. Nanotechnology 2010, 21, 85; https://doi.org/10.1088/0957-4484/21/8/085103.Search in Google Scholar

58. Jongho, J. Review of therapeutic applications of radiolabeled functional nanomaterials. Int. J. Mol. Sci. 2019, 20, 2323.10.3390/ijms20092323Search in Google Scholar PubMed PubMed Central

59. Peltek, O., Muslimov, A., Zyuzin, M., Timin, A. Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J. Nanobiotechnol. 2019, 17, 90; https://doi.org/10.1186/s12951-019-0524-9.Search in Google Scholar

60. Roig, J., Gmez-Vallejo, V., Gibson, P. Isotopes in Nanoparticles: Fundamentals and Applications; Florida Pan Stanford publishing: Boca Raton, 2016; p. 565.Search in Google Scholar

61. You, J., Zhao, J., Wen, X., Wu, C., Huang, Q., Guan, F., Li, C. Chemoradiation therapy using cyclopamine-loaded liquid-lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J. Control Release 2015, 202, 40; https://doi.org/10.1016/j.jconrel.2015.01.031.Search in Google Scholar

62. Liu, X., Wang, Y., Nakamura, K. Auger radiation-induced, antisense mediated cytotoxicity of tumor cells using a 3-component streptavid in delivery nanoparticle with 111In. J. Nucl. Med. 2009, 50, 582; https://doi.org/10.2967/jnumed.108.056366.Search in Google Scholar

63. Zdenka, K., Sandrine, L. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys. Med. Biol. 2018, 63, 244.10.1088/1361-6560/aa99ceSearch in Google Scholar

64. Haugen, B., Alexander, E., Bible, K., Doherty, G., Mandel, S., Nikiforov, Y., Pacini, F., Randolph, G., Sawaka, A., Schlumberger, M., Sosa, J., Sherman, S., Wartofsky, L. American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1; https://doi.org/10.1089/thy.2015.0020.Search in Google Scholar

65. Sakr, T., Khowessah, O., Motaleb, M., Abd El-Bary, A., El-Kolaly, M., Swidan, M. I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur. J. Pharm. Sci. 2018, 122, 239; https://doi.org/10.1016/j.ejps.2018.06.029.Search in Google Scholar

66. Zhu, J., Zhao, L., Cheng, Y., Xiong, Z., Tang, Y., Shen, M., Zhao, J., Shi, X. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015, 7, 18169; https://doi.org/10.1039/c5nr05585g.Search in Google Scholar

67. Baati, T., Al-kattan, A., Esteve, M., Njim, L., Ryabchikov, Y., Chaspoul, F., Hammami, M., Sentis, M., Kabashin, A., Braguer, D. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: in vivo assessment of safety and biodistribution. Sci. Rep. 2016, 6, 25400; https://doi.org/10.1038/srep25400.Search in Google Scholar

68. Petriev, V., Tischenko, V., Mikhailovskaya, A., Popov, A., Tselikov, G., Zelepukin, S., Deyev, M., Kaprin, A., Ivanov, S., Timoshenko, V., Prasad, P., Zavestovskaya, N., Kabashin, A. Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of 188Re radionuclide for cancer therapy. Sci. Rep. 2019, 9, 2017; https://doi.org/10.1038/s41598-018-38474-7.Search in Google Scholar

69. Bult, W., Varkevisser, R., Soulimani, F., Seevinck, P., de Leeuw, H., Bakker, C., Luijten, P., van Het Schip, A., Hennink, W., Nijsen, J. Holmium nanoparticles: preparation and in vitro characterization of a new device for radioablation of solid malignancies. Pharm. Res. (N. Y.) 2010, 27, 2205; https://doi.org/10.1007/s11095-010-0226-3.Search in Google Scholar

70. Klaassen, N., Arntz, M., Arranja, A., Roosen, J., Nijsen, J. The various therapeutic applications of themedical isotope holmium-166: a narrative review. EJNMMI Radiopharm. Chem. 2019, 4, 19; https://doi.org/10.1186/s41181-019-0066-3.Search in Google Scholar

71. Munaweera, I., Levesque-Bishop, D., Shi, Y., Di, Pasqua, A., Balkus, K. Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer. ACS Appl. Mater. Interfaces 2014, 6, 22250; https://doi.org/10.1021/am506045k.Search in Google Scholar

72. Zielhuis, S., Seppenwoolde, J., Mateus, V., Bakker, C., Krijger, G., Storm, G., Zonnenberg, B., van het Schip, A., Koning, G., Nijsen, J. Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother. Radiopharm. 2006, 21, 520; https://doi.org/10.1089/cbr.2006.21.520.Search in Google Scholar

73. Emfietzoglou, D., Kostarelos, K., Sgouros, G. An analytic dosimetry study for the use of radionuclide-liposome conjugatesin internal radiotherapy. J. Nucl. Med. 2001, 42, 499.Search in Google Scholar

74. Hruby, M., Konak, C., Kucka, J., Vetrik, M., Filippov, S., Vetvickam, D. Thermoresponsive hydrolytically degradable polymer micelles intended for radionuclide delivery. Macromol. Biosci. 2009, 9, 1016; https://doi.org/10.1002/mabi.200900083.Search in Google Scholar

75. Shukla, R., Chanda, N., Zambre, A., Upendran, A., Katti, K., Kulkarni, R., Nune, S., Casteel, S., Smith, C., Vimal, J. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 12426; https://doi.org/10.1073/pnas.1121174109.Search in Google Scholar

76. Kannan, R., Zambre, A., Chanda, N., Kulkarni, R., Shukla, R., Katti, K., Upendran, A., Cutler, C., Boote, E., Katti, K. Functionalized radioactive gold nanoparticles in tumor therapy. Nanomed. Nanobiotechnol. 2012, 4, 42; https://doi.org/10.1002/wnan.161.Search in Google Scholar

77. Axiak-Bechtel, S., Upendran, A., Lattimer, J., Kelsey, J., Cutler, C., Selting, K., Bryan, J., Henry, C., Boote, E., Tate, D. Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int. J. Nanomed. 2014, 9, 5001; https://doi.org/10.2147/ijn.s67333.Search in Google Scholar

78. Moeendarbari, S., Tekade, R., Mulgaonkar, A., Christensen, P., Ramezani, S., Hassan, G., Jiang, R., Öz, O., Hao, Y., Sun, X. Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Sci. Rep. 2016, 6, 20614; https://doi.org/10.1038/srep20614.Search in Google Scholar

79. Henriksen, G., Schoultz, B., Michaelsen, T., Bruland, S., Larsen, R. Sterically stabilized liposomes as a carrier for α-emitting radium and actinium radionuclides. Nucl. Med. Biol. 2004, 31, 441; https://doi.org/10.1016/j.nucmedbio.2003.11.004.Search in Google Scholar

80. Sofou, S., Thomas, J., Lin, H., McDevitt, M., Scheinberg, D., Sgouros, G. Engineered liposomes for potential alpha-particle therapy of metastatic cancer. J. Nucl. Med. 2004, 45, 253.Search in Google Scholar

81. Matson, M., Villa, C., Ananta, J., Law, J., Scheinberg, D., Wilson, L. Encapsulation of particle-emitting 225Ac3+ ions within carbon nanotubes. J. Nucl. Med. 2015, 56, 897; https://doi.org/10.2967/jnumed.115.158311.Search in Google Scholar

82. Dekempeneer, Y., Keyaerts, M., Krasniqi, A., Puttemans, J., Muyldermans, S., Lahoutte, T., D’huyvetter, M., Devoogdt, N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expet Opin. Biol. Ther. 2016, 16, 1035; https://doi.org/10.1080/14712598.2016.1185412.Search in Google Scholar

83. Teze, D., Sergentu, D., Kalichuk, V., Barbet, J., Deniaud, D., Galland, N., Maurice, R., Montavon, G. Targeted radionuclide therapy with astatine-211: oxidative dehalogenation of astato benzoate conjugates. Sci. Rep. 2017, 7, 2579; https://doi.org/10.1038/s41598-017-02614-2.Search in Google Scholar

84. Dziawer, Ł., Ko´zmi´, P., Me˛czyn´, S., Pruszyn´, M., Łyczko, M., Wa˛s, B., Celichowski, G., Grobelny, J., Jastrz˛ebski, J., Bilewicz, A. Gold nanoparticle bioconjugates labelled with 211At for targeted alpha therapy. RSC Adv. 2017, 7, 41024; https://doi.org/10.1039/c7ra06376h.Search in Google Scholar

85. Cedrowska, E., Łyczko, M., Piotrowska, A., Bilewicz, A., Stolarz, A., Trzcin´ ska, A., Szkliniarz, K., Was, B. Silver impregnated nanoparticles of titanium dioxide as carriers for 211At. Radiochim. Acta 2016, 104, 267; https://doi.org/10.1515/ract-2014-2373.Search in Google Scholar

86. Piotrowska, A., M˛eczy ´nska-Wielgosz, S., Majkowska-Pilip, A., Ko´zmi, ´ P., Wójciuk, G., C˛edrowska, E., Bruchertseifer, F., Morgenstern, A., Kruszewski, M., Bilewicz, A. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy. Nucl. Med. Biol. 2017, 47, 10; https://doi.org/10.1016/j.nucmedbio.2016.11.005.Search in Google Scholar

87. Mokhodoeva, O., Vlk, M., Málková, E., Kukleva, E., Miˇcolová, P., Štamberg, K., Šlouf, M., Dzhenloda, R., Kozempel, J. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016, 18, 301; https://doi.org/10.1007/s11051-016-3615-7.Search in Google Scholar

88. Yang, X., Gao, L., Guo, Q., Li, Y., Ma, Y., Yang, J., Gong, C., Yi, C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. J. Nano Res., in press.10.1007/s12274-020-2722-zSearch in Google Scholar

89. Ji, A., Zhang, Y., Lv, G., Lin, J., Qi, N., Ji, F., Du, M. 131I radiolabeled immune albumin nanospheres loaded with doxorubicin for in vivo combinatorial therapy. J. Label. Compd. Radiopharm. 2018, 61, 362; https://doi.org/10.1002/jlcr.3593.Search in Google Scholar

90. Zhiqiang, L., Wang, B., Zhang, Z., Wang, B., Xu, Q., Mao, W., Tian, J., Yang, K., Wang, F. Radionuclide imaging-guided chemo-radioisotopeSynergistic therapy using a 131I-labeled polydopamine multifunctional nanocarrier. Mol. Ther. 2018, 26, 1385; https://doi.org/10.1016/j.ymthe.2018.02.019.Search in Google Scholar

91. Yugui, F., Wang, H., Sun, D., Zhang, X. Nasopharyngeal cancer combination chemoradiation therapy based on folic acid modified, gefitinib and yttrium 90 co-loaded, core- shell structured lipid-polymer hybrid nanoparticles. Biomed. Pharmacother. 2019, 114, 108820; https://doi.org/10.1016/j.biopha.2019.108820.Search in Google Scholar

92. Wang, M., Abbineni, G., Clevenger, A., Mao, C., Xu, S. Upconversion nanoparticles: synthesis,surface modification and biological applications. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 710; https://doi.org/10.1016/j.nano.2011.02.013.Search in Google Scholar

93. Evgenii, L., Guryeva, O., Volodinaa, Y., Shilyaginaa, V., Gudkova, V., Balalaevaa, B., Volovetskiya, V., Lyubeshkine, V., Sen’f, A., Ermilovf, A., Vodeneeva, V., Petrovg, V., Zvyagina, I., Alferovi, M. Radioactive (90Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9690; https://doi.org/10.1073/pnas.1809258115.Search in Google Scholar

94. Munaweera, I., Shi, Y., Koneru, B., Saez, R., Aliev, A., Di, Pasqua, A. Chemoradiotherapeutic magnetic nanoparticles for targeted treatment of nonsmall cell lung cancer. Mol. Pharm. 2015, 12, 3588; https://doi.org/10.1021/acs.molpharmaceut.5b00304.Search in Google Scholar

95. Rangel, L. Cancer Treatment-Conventional and Innovative Approaches Book; Intechopen: Croatia, 2013; p. 257.10.5772/45937Search in Google Scholar

96. Verduijn, G., de Wee, E. M., Rijnen, Z. Deep hyperthermia with the HYPER collar system combined with irradiation for advanced head and neck carcinoma a feasibility study. Int. J. Hyperther. 2018, 34, 994; https://doi.org/10.1080/02656736.2018.1454610.Search in Google Scholar

97. Feng, L., Dong, Z., Liang, C., Chen, M., Tao, D., Cheng, L., Yang, K., Liu, Z. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 2018, 181, 81; https://doi.org/10.1016/j.biomaterials.2018.07.049.Search in Google Scholar

98. Spirou, S., Basini, M., Lascialfari, A., Sangregorio, C., Innocenti, C. Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice. Nanomaterials 2018, 8, 401; https://doi.org/10.3390/nano8060401.Search in Google Scholar

99. Zhang, A., Guo, W., Qi, Ya-fei., Wang, J., Ma, X., Yu, De-xin. synergistic effects of gold nanocages in hyperthermia and radiotherapy treatment. Nanoscale Res. Lett. 2016, 11, 279; https://doi.org/10.1186/s11671-016-1501-y.Search in Google Scholar

100. Natarajan, A., Gruettner, C., Ivkov, R. Nanoferrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics. Bioconjugate Chem. 2008, 19, 1211; https://doi.org/10.1021/bc800015n.Search in Google Scholar

101. DeNardo, S., DeNardo, G., Miers, L., Natarajan, A., Foreman, A., Ivkov, R. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin. Cancer Res. 2005, 11, 7087; https://doi.org/10.1158/1078-0432.ccr-1004-0022.Search in Google Scholar

102. Radovi´c, M., Calatayud, M., Goya, G., Ibarra, M., Anti, B., Spasojevi, V., Nikoli, N., Jankovi, D., Mirkovi, M., Vranje, S. Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy. J. Biomed. Mater. Res. 2015, 103, 126.10.1002/jbm.a.35160Search in Google Scholar PubMed

103. Buckway, B., Frazier, N., Gormley, A., Ray, A., Ghandehari, H. Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer-90Y conjugates in treatment of prostate tumors. Nucl. Med. Biol. 2014, 41, 282; https://doi.org/10.1016/j.nucmedbio.2013.12.002.Search in Google Scholar

104. Radovi, M., Vranje, S., Nikoli, N., Jankovi, D., Goya, G., Torres, T., Calatayud, M., Bruvera, I., Ibarra, M., Spasojevi, V. Development and evaluation of 90Y-labeled albumin microspheres loaded with magnetite nanoparticles for possible applications in cancer therapy. J. Mater. Chem. 2012, 22, 24017.10.1039/c2jm35593kSearch in Google Scholar

105. Wang, Y., Li, L., Shi, X., Liu, D., Yang, Y., Zhang, Y., Wu, G., Zhu, R. Radionuclide 188Re-loaded photothermal hydrogel for cancer theranostics, Part. Part. Syst. Charact. 2020, 37, 1900421; https://doi.org/10.1002/ppsc.201900421.Search in Google Scholar

106. Tang, Q. S., Chen, D. Z., Xue, W. Q., Xiang, J., Gong, Y., Zhang, L., Guo, C. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int. J. Nanomed. 2011, 6, 3077.10.2147/IJN.S24322Search in Google Scholar

107. Tang, Q., Chen, D. Study of the therapeutic effect of 188Re labeled folate targeting albumin nanoparticle coupled with cis-diamminedichloroplatinum cisplatin on human ovarian cancer. Bio Med. Mater. Eng. 2014, 24, 711; https://doi.org/10.3233/bme-130859.Search in Google Scholar

108. Zhou, M., Zhang, R., Huang, M., Lu, W., Song, S., Melancon, M., Tian, M., Liang, D., Li, C. A chelator-free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 2010, 132, 15351; https://doi.org/10.1021/ja106855m.Search in Google Scholar

109. Zhoua, M., Zhaoa, J., Tianb, M., Songc, S., Zhanga, R., Guptad, S., Tane, D., Shenf, H., Ferrarif, M., Li, C. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in orthotopic 4T1 breast Tumor model. Nanoscale 2015, 7, 19438; https://doi.org/10.1039/c5nr04587h.Search in Google Scholar

110. Zhou, M., Chen, Y., Adachi, M., Wen, X., Erwin, B., Mawlawi, O., Lai, S., Li, C. Single agent nanoparticle for radiotherapy and radiophotothermal therapy in anaplastic thyroid cancer. Biomaterials 2015, 57, 41; https://doi.org/10.1016/j.biomaterials.2015.04.013.Search in Google Scholar

111. Liu, Q., Qian, Y., Li, P., Zhang, S., Wang, Z., Liu, J., Sun, X., Fulham, M., Feng, D., Che, Z. The combined therapeutic effects of 131iodine-labeled multifunctional copper sulfide-loaded microspheres in treating breast cancer. Acta Pharm. Sin. B 2018, 8, 371; https://doi.org/10.1016/j.apsb.2018.04.001.Search in Google Scholar

112. Song, X., Liang, C., Feng, L., Yang, K., Liu, Z. Iodine-131-labeled transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy. Biomater. Sci. 2017, 5, 1828; https://doi.org/10.1039/c7bm00409e.Search in Google Scholar

113. Sibata, C. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn. Ther. 2010, 7, 61.10.1016/j.pdpdt.2010.02.001Search in Google Scholar PubMed

114. Kadish, K., Smith, K., guilard, R. The Porphyrin Handbook, Phthalocyanines: Properties and Materials, Vol. 17; Academic Press: Elsiver Science San Diego, California, USA, 2003; p. 767.Search in Google Scholar

115. Mcfarland, S., Mandel, A., Dumoulin-White, R., Gasser, G. Metal-based photosensitisers for photodynamic therapy: the future of multimodal oncology. Curr. Opin. Chem. Biol. 2020, 56, 23; https://doi.org/10.1016/j.cbpa.2019.10.004.Search in Google Scholar

116. Solban, N., Ortel, B., Pogue, B., Hasan, T. Targeted optical imaging and photodynamic therapy. Ernst Schering Res. Found. Workshop 2005, 12, 229.10.1007/3-540-26809-X_12Search in Google Scholar PubMed

117. Bugaj, M. Targeted photodynamic therapy-a promising strategy of tumor treatment. Photochem. Photobiol. Sci. 2011, 10, 1097; https://doi.org/10.1039/c0pp00147c.Search in Google Scholar

118. Yurt, F., Tunçel, A. Combined photodynamic and radiotherapy synergistic effect in cancer treatment. J. Novel Approach. Cancer Study 2018, 1, 27; https://doi.org/10.31031/nacs.2018.01.000506.Search in Google Scholar

119. Hu, J., Tang, Y., Elmenoufy, A., Xu, H., Cheng, Z. Nanocomposite-based photodynamic therapy strategies for deep tumor treatment. Small 2015, 11, 5860; https://doi.org/10.1002/smll.201501923.Search in Google Scholar

120. Bechet, D., Mordon, S., Guillemin, F., Barberi-Heyob, M. Photodynamic therapy of malignant brain tumours: a complementary approach to conventional therapies. Cancer Treat Rev. 2014, 40, 229; https://doi.org/10.1016/j.ctrv.2012.07.004.Search in Google Scholar

121. Hou, B., Zheng, B., Gong, X., Wang, H., Wang, S. A UCN@mSiO2@cross-linked lipid with high steric stability as a NIR remote controlled-release nanocarrier for photodynamic therapy. J. Mater. Chem. B 2015, 3, 3531; https://doi.org/10.1039/c5tb00240k.Search in Google Scholar

122. Punjabi, A., Wu, X., Tokatli-Apollon, A., El-Rifai, M., Lee, H. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano 2014, 8, 10621; https://doi.org/10.1021/nn505051d.Search in Google Scholar

123. Kotagiri, N., Sudlow, G., Akers, W., Achilefu, S. Breaking the depth dependency of phototherapy with cerenkov radiation and Low-Radiance-Responsive Nanophotosensitizers. Nat. Nanotechnol. 2015, 10, 370; https://doi.org/10.1038/nnano.2015.17.Search in Google Scholar

124. Shaffer, M., Pratt, C., Grimm, J. Utilizing the power of cerenkov light with nanotechnology. Nat. Nanotechnol. 2017, 12, 106; https://doi.org/10.1038/nnano.2016.301.Search in Google Scholar

125. Kavadiya, S., Biswas, P. Design of Cerenkov-assisted photoactivation of TiO2 nanoparticles and reactive oxygen species generation for cancer treatment. J. Nucl. Med. 2018, 60, 6; https://doi.org/10.2967/jnumed.118.215608.Search in Google Scholar

126. Kamkaew, A., Cheng, L., Goel, S., Valdovinos, H., Barnhart, T., Liu, Z. Cerenkov radiation induced photodynamic therapy using chlorine6-loaded hollow mesoporous silica nanoparticles. ACS Appl. Mater. Interface 2016, 8, 26630; https://doi.org/10.1021/acsami.6b10255.Search in Google Scholar

127. Lee, W., Jeon, M., Oh, C., Choi, J., choi, J., Im, H. Preparation of radiolabeled europium loaded nanoparticle for in vivo imaging and gamma ray induced photodynamic therapy. J. Nucl. Med. 2019, 60, 132.Search in Google Scholar

128. Dalong, N., Ferreira, C., Barnhart, T., Quach, V., Yu, B., Jiang, D., Weijun, W., Liu, H., Engle, J., Hu, P., Cai, W. Magnetic targeting of nanotheranostics enhances cerenkov radiation-induced photodynamic therapy. J. Am. Chem. Soc. 2018, 140, 14971; https://doi.org/10.1021/jacs.8b09374.Search in Google Scholar

129. Tian, L., Wang, Y., Sun, L., Yang, K., Wang, S., Liu, Z. Cerenkov luminescence-induced NO release from 32P-labeled ZnFe (CN)5NO nanosheets to enhance radioisotope-immunotherapy. Matter 2019, 1, 1061; https://doi.org/10.1016/j.matt.2019.07.007.Search in Google Scholar

130. Feng, Y., Wen, G., Tan, J. Preliminary study on biological features of 188Re –anti-hepatocellular carcinoma immune-magnetite nanoparticle. J. Nucl. Med. 2009, 50, 1914.Search in Google Scholar

131. Li, W., Liu, Z., Li, C., Li, N., Fang, L., Chang, J., Tan, J. Radionuclide therapy using 131I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR over expression. J. Cancer Res. Clin. Oncol. 2016, 142, 619; https://doi.org/10.1007/s00432-015-2067-2.Search in Google Scholar

132. Bandekar, A., Zhu, C., Jindal, R., Bruchertseifer, F., Morgenstern, A., Sofou, S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular particle therapy of cancer. J. Nucl. Med. 2014, 55, 107; https://doi.org/10.2967/jnumed.113.125476.Search in Google Scholar

133. Zhu, C., Bandekar, A., Ray, S., Pomper, M., Bruchertseifer, F., Morgenstern, A. Anti-PSMA labeled liposomes loaded with Actinium-225 for potential antivascular alpha-radiotherapy. J. Nucl. Med. 2014, 55, 640.10.2967/jnumed.113.125476Search in Google Scholar

134. Mulvey, J., Villa, C., McDevitt, M., Escorcia, F., Casey, E., Scheinberg, D. Self-assembly of carbon nanotubes and antibodies on tumors for targeted amplified delivery. Nat. Nanotechnol. 2013, 8, 763; https://doi.org/10.1038/nnano.2013.190.Search in Google Scholar

135. Ruggiero, A., Villa, C., Holland, J., Sprinkle, S., May, C., Lewis, J., Scheinberg, D., McDevitt, M. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomed. 2010, 5, 783.10.2147/IJN.S13300Search in Google Scholar PubMed PubMed Central

136. Wang, Y., Yang, T., He, Q. Strategies for Engineering Advanced Nanomedicines for Gas Therapy of Cancer; National Science Review, 2020.10.1093/nsr/nwaa034Search in Google Scholar PubMed PubMed Central

137. Frederiksen, L., Sullivan, R., Maxwell, L. Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin. Cancer Res. 2007, 13, 2199; https://doi.org/10.1158/1078-0432.ccr-06-1807.Search in Google Scholar

138. Wang, Y., Yang, T., He, Q. Strategies for engineering advanced nanomedicines for gas therapy of cancer. Natl. Sci. Rev. 2020, 7, 1485; https://doi.org/10.1093/nsr/nwaa034.Search in Google Scholar

139. Langley-Evans, S. C., Phillips, G. J., Jacson, A. A. Sulpher dioxide: a potent glutathione depleting agent. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1996, 114, 89; https://doi.org/10.1016/0742-8413(96)00012-6.Search in Google Scholar

140. Onishi, Y., Kawamoto, T., Ueha, T., Kishimoto, K., Hara, H. Transcutaneous application of carbon dioxide (CO2) induces mitochondrial apoptosis in human malignant fibrous histiocytoma in vivo. PLoS One 2012, 7, 49189; https://doi.org/10.1371/journal.pone.0049189.Search in Google Scholar

141. Fujita, K., Tanaka, Y., Abe, S. A photoactive carbon-monoxide-releasing protein cage for dose-regulated delivery in living cells. Angew. Chem. Int. Ed. 2016, 55, 1056; https://doi.org/10.1002/anie.201506738.Search in Google Scholar

142. Jin, Z., Wen, Y., Hu, Y. MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine. Nanoscale 2017, 9, 3637; https://doi.org/10.1039/c7nr00231a.Search in Google Scholar

143. Zhang, K., Xu, H., Chen, H. CO2 bubbling-based’nanobomb’system for targetedly suppressing panc-1 pancreatic tumor via low intensity ultrasound-activated inertial cavitation. Theranostics 2015, 5, 1291; https://doi.org/10.7150/thno.12691.Search in Google Scholar

144. Cheng, Y., Cheng, H., Jiang, C. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785; https://doi.org/10.1038/ncomms9785.Search in Google Scholar

145. Fan, J., He, Q., Liu, Y. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization. ACS Appl. Mater. Interfaces 2016, 8, 13804; https://doi.org/10.1021/acsami.6b03737.Search in Google Scholar

146. Yang, T., Jin, Z., Wang, Z. Intratumoral high-payload delivery and acid-responsive release of H2 for efficient cancer therapy using the ammonia borane-loaded mesoporous silica nanomedicine. Appl. Mater. Today 2018, 11, 136; https://doi.org/10.1016/j.apmt.2018.01.008.Search in Google Scholar

147. Yu, L., Hu, P., Chen, Y. Gas-generating nanoplatforms: material chemistry, multifunctionality, and gas therapy. Adv. Mater. 2018, 30, 776; https://doi.org/10.1002/adma.201801964.Search in Google Scholar

148. Gao, M., Liang, C., Song, X., Chen, Q., Jin, Q., Wang, C., Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429; https://doi.org/10.1002/adma.201701429.Search in Google Scholar

149. Manoharan, D., Li, W., Yeh, C. Advances in controlled gas-releasing nanomaterials for therapeutic applications. J. Nanoscale Horizons 2019, 4, 557; https://doi.org/10.1039/c8nh00191j.Search in Google Scholar

150. Zhang, C., Zheng, D., Li, C., Zou, M., Yu, W., Liu, M., Peng, S., Zhang, Z., Zhang, X. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. J. Biomater. 2019, 223, 165; https://doi.org/10.1016/j.biomaterials.2019.119472.Search in Google Scholar

151. Tian, L., Chen, Q., Yi, X., Chen, J., Liang, C., Chao, Y., Yang, K., Liu, Z. Albumin-templated manganese dioxide nanoparticles for enhanced radioisotope therapy. Small 2017, 13, 1700640; https://doi.org/10.1002/smll.201700640.Search in Google Scholar

152. Gill, M., Vallis, K. Transation metal compounds as cancer radiosensitizers. Chem. Soc. Rev. 2019, 48, 540; https://doi.org/10.1039/c8cs00641e.Search in Google Scholar

153. Djuzenova, C., Elsner, I., Katzer, A., Worschech, E., Distel, L., Flentje, M. Radiosensitivity in breast cancer assessed by the histone γ-H2AX and 53BP1 foci. Radiat. Oncol. 2013, 8, 98; https://doi.org/10.1186/1748-717x-8-98.Search in Google Scholar

154. Kefayat, A., Ghahremani, F., Safavi, A., Hajiaghababa, A., Moshtaghian, J. phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci. Rep. 2019, 9, 19161; https://doi.org/10.1038/s41598-019-55605-w.Search in Google Scholar

155. Fokas, E., Prevo, R., Pollard, J., Reaper, P., Charlton, P., Cornelissen, B., Vallis, K., Hammond, E., Olcina, M., Gillies, W., Muschel, R., Brunner, T. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. J Cell Death Dis. 2012, 3, 441; https://doi.org/10.1038/cddis.2012.181.Search in Google Scholar

156. Schuemann, J., Berbeco, R., Chithrani, D., Cho, S., Kumar, R., Mahon, S., Sridhar, S., Krishnan, S. Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 189; https://doi.org/10.1016/j.ijrobp.2015.09.032.Search in Google Scholar

157. Huang, Y., Chen, H., Jia, X., Wang, S., Wang, Z., Shi, J. Bi2S3-embedded mesoporous silica nanoparticles for efficient drug delivery and interstitial radiotherapy sensitization. Biomaterials 2015, 37, 447; https://doi.org/10.1016/j.biomaterials.2014.10.001.Search in Google Scholar

158. Miladi, I., Aloy, M., Armandy, E., Mowat, P., Kryza, D., Magne, N., Tillement, O., Lux, F., Billotey, C., Janier, M., Rodriguez-Lafrasse, C. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 2015, 11, 247; https://doi.org/10.1016/j.nano.2014.06.013.Search in Google Scholar

159. Bhattarai, S., Derry, P., Aziz, K., Singh, P. Gold nanotriangles: scale up and x-ray radiosensitization effects in mice. Nanoscale 2017, 9, 5085; https://doi.org/10.1039/c6nr08172j.Search in Google Scholar

160. Zhang, X., Luo, Z., Chen, J., Song, S., Yuan, X., Shen, X., Xie, J. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015, 5, 8669; https://doi.org/10.1038/srep08669.Search in Google Scholar

161. Ma, N., Wu, G., Zhang, X., Jiang, W., Jia, R., Wang, H. Shape-Dependent Radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl. Mater. Interfaces 2017, 9, 13037; https://doi.org/10.1021/acsami.7b01112.Search in Google Scholar

162. Xi, L., Yan, L., Pengcheng, Z., Xiaodong, J., Xiaogang, Z., Fei, Y., Weiqiang, C., Qiang, L. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation. Int. J. Nanomed. 2016, 11, 3517.10.2147/IJN.S105348Search in Google Scholar PubMed PubMed Central

163. Atkinson, R., Zhang, M., Diagaradjane, P., Peddibhotla, S., Contreras, A., Hilsenbeck, S., Woodward, W., Krishnan, S., Chang, J., Rosen, J. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci. Transl. Med. 2010, 2, 55; https://doi.org/10.1126/scitranslmed.3001447.Search in Google Scholar

164. Liu, X., Liu, Y., Zhang, P., Jin, X., Zheng, X., Fei, Ye., Chen, W., Li, Q. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation. Int. J. Nanomed. 2016, 11, 3517; https://doi.org/10.2147/ijn.s105348.Search in Google Scholar

165. Liu, J., Bu, W., Shi, J. Silica coated upconversion nanoparticles: a versatile platform for the development of efficient theranostics. Acc. Chem. Res. 2015, 48, 1797; https://doi.org/10.1021/acs.accounts.5b00078.Search in Google Scholar

166. Li, Q., Tanaka, Y., Saitoh, Y., Tanaka, H., Miwa, N. Carcinostatic effects of platinum nanocolloid combined with gamma irradiation on human esophageal squamous cell carcinoma. Life Sci. 2015, 127, 106; https://doi.org/10.1016/j.lfs.2015.01.028.Search in Google Scholar

167. Charest, G., Paquette, B., Fortin, D., Mathieu, D., Sanche, L. Concomitant treatment of F98 glioma cells with new liposomal platinum compounds and ionizing radiation. J. Neuro Oncol. 2010, 97, 187; https://doi.org/10.1007/s11060-009-0011-5.Search in Google Scholar

168. Sech, C. L., Takakura, K., Saint-Marc, C., Frohlich, H., Charlier, M., Usami, N. Strand break induction by photoabsorption in DNA-bound molecules. J. Radiat. Res. 2000, 153, 454. https://doi.org/10.1667/0033-7587(2000)153[0454:sbibpi]2.0.co;2.10.1667/0033-7587(2000)153[0454:SBIBPI]2.0.CO;2Search in Google Scholar

169. Mc Ginnity, T., Dominguez, O., Curtis, T., Nallathamby, P., Hoffman, A, Roeder, R. K. Hafnia (HfO2) nanoparticles as an X-ray contrast agent and mid-infrared biosensor. Nanoscale 2016, 8, 13627; https://doi.org/10.1039/c6nr03217f.Search in Google Scholar

170. Bonvalot, S., Le Pechoux, C., De Baere, T., Kantor, G., Buy, X., Stoeckle, E. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin. Cancer Res. 2017, 23, 908; https://doi.org/10.1158/1078-0432.ccr-16-1297.Search in Google Scholar

171. Bonvalot, S., Le Pechou, C., De Baere, T., Buy, X., Italiano, A., Stockle, E. Phase I study of NBTXR3 nanoparticles, in patients with advanced soft tissue sarcoma (STS). J. Clin. Oncol. 2014, 32, 10563; https://doi.org/10.1200/jco.2014.32.15_suppl.10563.Search in Google Scholar

172. Kotaro, M., Hiroyuki, S., Tan, D., Ayumi, S., Keigo, N., Aoi, K., Masahiko, T., Ryo, Y., Tetsuya, K., Toshiki, T., Fuyuhiko, T. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: implications for Auger therapy. Sci. Rep. 2019, 9, 13275.10.1038/s41598-019-49978-1Search in Google Scholar

173. Miladi, I., Aloy, M. T., Armandy, E., Mowat, P., Kryza, D., Magne, N., Rodriguez-Lafrasse, C. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 2015, 11, 247; https://doi.org/10.1016/j.nano.2014.06.013.Search in Google Scholar

174. Verry, C., Sancey, L., Dufort, S., Duc, G., Mendoza, C., Lux, F., Grand, S., Arnaud, J., Quesada, J., Villa, J., Tillement, O., Balosso, J. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol. BMJ 2019, 9, 585; https://doi.org/10.1136/bmjopen-2018-023591.Search in Google Scholar

175. Akshay, N., Anupama, S., Sanjeev, S. Nanoparticles paclitaxel (Nanoxel) as a safe and cost effective radio-sensitizer in locally advanced head and neck carcinoma. J. Cancer. Ther. 2012, 3, 44.10.4236/jct.2012.31006Search in Google Scholar

176. Werner, M., Cummings, N., Sethi, M., Wang, E., Sukumar, R., Moore, D., Wang, A. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 463; https://doi.org/10.1016/j.ijrobp.2013.02.009.Search in Google Scholar

177. Sedigheh, A., Hamed, N., Ali, S., Hossein, D. Preparation of bismuth sulfide nanoparticles as targeted biocompitable nanoradiosensitizer and carrier of methotrexate. J. Appl. Organometall. Chem. 2019, 34, 345.10.1002/aoc.5251Search in Google Scholar

178. Merfat, A., Moshi, G., Terrence, P., Anton, B. Radiation dose enhancement using Bi2S3 nanoparticles in cultured mouse PC3 prostate and B16 Melanoma cells. Nano World J. 2015, 1, 99.10.17756/nwj.2015-013Search in Google Scholar

179. Yao, M., Ma, M., Chen, Y., Jia, X., Xu, G., Xu, H., Chen, H., Wu, R. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials 2014, 35, 8197; https://doi.org/10.1016/j.biomaterials.2014.06.010.Search in Google Scholar

180. Qi, F., Liu, R. Tumor-targeted and biocompatible MoSe2 nanodot@ albumin nanospheres as a dual-modality therapy agent for synergistic photothermal radiotherapy. Nanoscale Res. Lett. 2019, 14, 67–78; https://doi.org/10.1186/s11671-019-2896-z.Search in Google Scholar

181. Shen, S., Chao, Y., Dong, Z., Wang, G., Yi, X., Song, G., Yang, K., Cheng, L., Liu, Z. Bottom- up preparation of uniform ultrathin rhenium disulfide nanosheets for image-guided photothermal radiotherapy. Adv. Funct. Mater. 2017, 27, 1700250; https://doi.org/10.1002/adfm.201700250.Search in Google Scholar

182. Su, W., Wang, T., Li, X., Zhang, L., Li, D., Zuo, C. Iodine 131-labeled AuNPs-TAT nanoparticles target cells Nucleiin colon cancer for enhanced radioisotope therapy. J. Nucl. Med. 2019, 60, 1020.Search in Google Scholar

183. Goas, M., Paquet, M., Paquirissamy, A., Guglielmi, J., Compin, C., Thariat, J., Vassaux, G., Geertsen, V., Humbert, O., Renault, J., Carrot, G., Pourcher, T., Cambien, B. Improving 131I radioiodine therapy by hybrid polymer-grafted gold nanoparticles international. J. Nanomed. 2019, 14, 7933; https://doi.org/10.2147/ijn.s211496.Search in Google Scholar

184. Gill, M., Menon, J., Jarman, P., Owen, J., Koukelli, I., Able, S., Thomas, J., Carlisleb, R., Vallis, K. 111In-labelled polymeric nanoparticles incorporating a ruthenium-based radiosensitizer for EGFR-targeted combination therapy in oesophageal cancer cells. Nanoscale 2018, 10, 10596; https://doi.org/10.1039/c7nr09606b.Search in Google Scholar

185. Chao, Y., Liang, C., Yang, Y., Wang, G., Maiti, D., Tian, L., Wang, F., Pan, W., Wu, S., Yang, K., Liu, Z. Highly effective radioisotope cancer therapy with a non-therapeutic isotope delivered and sensitized by nanoscale coordination polymers. ACS Nano 2018, 12, 7519; https://doi.org/10.1021/acsnano.8b02400.Search in Google Scholar

Received: 2020-09-18
Accepted: 2021-03-22
Published Online: 2021-04-05
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0098/html
Scroll to top button