Skip to main content
Log in

Moore–Gibson–Thompson thermoelasticity in the context of double porous materials

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The present study approaches the theory of Moore–Gibson–Thompson thermoelasticity in the context of the materials with double porosity structure. The main results of the present study are based on a reciprocity theorem for the thermoelastic materials with double porosity that leads us in determining of the uniqueness theorems for the solution of mixed problems for the materials with double porosity. The reciprocity theorem is a Betti-type result that has the main goal to establish the connection between the external action systems and their thermoelastic states. In order to obtain the uniqueness results, it was introduced a new form of energy equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson, P.A.: Compressible-fluid dynamics. McGraw-Hill, New York (1972)

    Book  Google Scholar 

  2. Conti, M., Pata, V., Quintanilla, R.: Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature. Asymptot. Anal. 120(1–2), 1–21 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)

    Google Scholar 

  4. Dell’Oro, F., Lasiecka, I., Pata, V.: The Moore-Gibson-Thompson equation with memory in the critical case. J. Differ. Equ. 261(7), 4188–4222 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dell’Oro, F., Pata, V.: On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity. Appl. Math. Optim. 76, 641–655 (2017)

    Article  MathSciNet  Google Scholar 

  6. Lasiecka, I., Wang, X.: Moore-Gibson-Thompson equation with memory, part II: general decay of energy. J. Differ. Equ. 259, 7610–7635 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Pellicer, M., Sola-Morales, J.: Optimal scalar products in the Moore-Gibson-Thompson equation. Evol. Equ. Control Theory 8, 203–220 (2019)

    Article  MathSciNet  Google Scholar 

  8. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybern. 40, 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Marchand, R., McDevitt, T., Triggiani, R.: An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math. Methods Appl. Sci. 35, 1896–1929 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

  11. Magana, A., Quintanilla, R.: Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Math. Mech. Solids 14, 622–634 (2009)

    Article  MathSciNet  Google Scholar 

  12. Knops, R.J., Quintanilla, R.: Continuous data dependence in linear theories of thermoelastodynamics. Part I: classical theories. Basics and logarithmic convexity. In: Hetnarski, R.B. (ed.) Encycl. Therm. Stress. Springer, Dordrecht (2014)

    Google Scholar 

  13. Knops, R.J., Payne, L.E.: Growth estimates for solutions of evolutionary equations in Hilbert space with applications to elastodynamics. Arch. Ration. Mech. Anal. 41, 363–398 (1971)

    Article  MathSciNet  Google Scholar 

  14. Marin, M., Ochsner, O., Craciun, E.-M.: A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure. Continuum Mech. Thermodyn. 32(1), 269–278 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Marin, M., Ochsner, A., Craciun, E.-M.: A generalization of the Gurtin’s variational principle in thermoelasticity without energy dissipation of dipolar bodies. Continuum Mech. Thermodyn. 32, 1685–1694 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. Jangid, K., Mukhopadhyay, S.: A domain of influence theorem under MGT thermoelasticity theory. Math. Mech. Solids 26(2), 285–295 (2021)

    Article  MathSciNet  Google Scholar 

  17. Marin, M., Othman, M.I.A., Seadawy, A.R., Carstea, C.: A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies. J. Taibah Univ. Sci. 14(1), 653–660 (2020)

    Article  Google Scholar 

  18. Berryman, J.G., Wang, H.F.: Elastic wave propagation and attenuation in a double porosity dual permeability medium. Int. J. Rock Mech. Min. Sci. 37, 63–78 (2000)

    Article  Google Scholar 

  19. Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30(24), 2268: 7-1–7-5 (2003)

  20. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  21. Iesan, D., Quintanilla, R.: On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stresses 37, 1017–1036 (2014)

    Article  Google Scholar 

  22. Svanadze, M.: External boundary value problems of steady vibrations in the theory of rigid bodies with a double porosity structure. Proc. Appl. Math. Mech. 15, 365–366 (2015)

    Article  Google Scholar 

  23. Svanadze, M.: Plane waves and problems of steady vibrations in the theory of viscoelasticity for Kelvin-Voigt materials with double porosity. Arch. Mech. 68, 441–458 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Svanadze, M.: Boundary value problems of steady vibrations in the theory of thermoelasticity for materials with a double porosity structure. Arch. Mech. 69, 347–370 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Kansal, T.: Generalized theory of thermoelastic diffusion with double porosity. Arch. Mech. 70(3), 241–268 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Svanadze, M.: Steady vibration problems in the coupled linear theory of porous elastic solids. Math. Mech. Solids 25, 768–790 (2020)

    Article  MathSciNet  Google Scholar 

  27. Bazarra, N., Fernández, J.R., Leseduarte, M.C., Magana, A., Quintanilla, R.: On the thermoelasticity with two porosities: asymptotic behaviour. Math. Mech. Solids 24, 2713–2725 (2019)

    Article  MathSciNet  Google Scholar 

  28. Svanadze, M.: Potential method in the coupled theory of elastic double-porosity materials. Acta Mech. (2021). https://doi.org/10.1007/s00707-020-02921-2

  29. Florea, O.: Harmonic vibrations in thermoelastic dynamics with double porosity structure. Math. Mech. Solids 24(8), 2410–2424 (2019)

    Article  MathSciNet  Google Scholar 

  30. Florea, O.: The backward in time problem of double porosity material with microtemperature. Symmetry-Basel 11(4), 552 (2019)

    Article  Google Scholar 

  31. Emin, A.N., Florea, O.A., Craciun, E.-M.: Some uniqueness results for thermoelastic materials with double porosity structure. Continuum Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00952-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Bobe.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florea, O.A., Bobe, A. Moore–Gibson–Thompson thermoelasticity in the context of double porous materials. Continuum Mech. Thermodyn. 33, 2243–2252 (2021). https://doi.org/10.1007/s00161-021-01025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01025-z

Keywords

Navigation