Skip to main content
Log in

DISSOLUTION RATES OF ALLOPHANE WITH VARIABLE Fe CONTENTS: IMPLICATIONS FOR AQUEOUS ALTERATION AND THE PRESERVATION OF X-RAY AMORPHOUS MATERIALS ON MARS

  • Published:
Clays and Clay Minerals

Abstract

Recent measurements from Mars document X-ray amorphous/nano-crystalline materials in multiple locations across the planet. Despite their prevalence, however, little is known about these materials or what their presence implies for the history of Mars. The X-ray amorphous component of the martian soil in Gale crater has an X-ray diffraction pattern that can be fit partially with allophane (approximately Al2O3⋅(SiO2)1.3–2⋅(H2O)2.5–3), and the low-temperature water-release data are consistent with allophane. The chemical data from Gale crater suggest that other silicate materials similar to allophane, such as Fe-substituted allophane (approximately (Fe2O3)0.01–0.5(Al2O3)0.5–0.99⋅(SiO2)2⋅3H2O), may also be present. In order to investigate the properties of these potential poorly crystalline components of the martian soil, Fe-free allophane (Fe:Al = 0), Fe-poor allophane (Fe:Al = 1:99), and Fe-rich allophane (Fe:Al = 1:1) were synthesized and then characterized using electron microscopy and Mars-relevant techniques, including infrared spectroscopy, X-ray diffraction, and evolved gas analysis. Dissolution experiments were performed under acidic (initial pH values pH0 = 3.01, pH0 = 5.04), near-neutral (pH0 = 6.99), and alkaline (pH0 = 10.4) conditions in order to determine dissolution kinetics and alteration phases for these poorly crystalline materials. Dissolution rates (rdiss), based on the rate of Si release into solution, show that these poorly crystalline materials dissolve approximately an order of magnitude faster than crystalline phases with similar compositions at all pH conditions. For Fe-free allophane, logrdiss = –10.65–0.15 × pH; for Fe-poor allophane, logrdiss = –10.35–0.22 × pH; and for Fe-rich allophane, logrdiss = –11.46–0.042 × pH at 25°C, where rdiss has the units of mol m–2 s–1. The formation of incipient phyllosilicate-like phases was detected in Fe-free and Fe-rich allophane reacted in aqueous solutions with pH0 = 10.4 (steady-state pH ≈ 8). Mars-analog instrument analyses demonstrate that Fe-free allophane, Fe-poor allophane, and Fe-rich allophane are appropriate analogs for silicate phases in the martian amorphous soil component. Therefore, similar materials on Mars must have had limited interaction with liquid water since their formation. Combined with chemical changes expected from weathering, such as phyllosilicate formation, the rapid alteration of these poorly crystalline materials may be a useful tool for evaluating the extent of aqueous alteration in returned samples of martian soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abidin, Z., Matsue, N., & Henmi, T. (2004). Dissolution mechanism of nano-ball allophane with dilute alkali solution. Clay Science, 12, 213–222.

    Google Scholar 

  • Achilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., … Morookian, J. M. (2017). Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars. Journal of Geophysical Research, Planets, 122, 2344–2361.

    Article  Google Scholar 

  • Baker, L. L., & Strawn, D. G. (2012). Fe K-edge XAFS spectra of phyllosilicates of varying crystallinity. Physics and Chemistry of Minerals, 39, 675–684.

    Article  Google Scholar 

  • Baker, L. L., & Strawn, D. G. (2014). Temperature effects on synthetic nontronite crystallinity and implications for nontronite formation in Columbia River Basalts. Clays and Clay Minerals, 62, 89–101.

    Article  Google Scholar 

  • Baker, L. L., Nickerson, R. D., & Strawn, D. G. (2014). XAFS study of Fe-substituted allophane and imogolite. Clays and Clay Minerals, 62, 20–34.

    Article  Google Scholar 

  • Baldermann, A., Dohrmann, R., Kaufhold, S., Nickel, C., Letofsky-Papst, I., & Dietzel, M. (2014). The Fe-Mg-saponite solid solution series—a hydrothermal synthesis study. Clay Minerals, 49, 391–415.

    Article  Google Scholar 

  • Beard, A. D., Downes, H., & Chaussidon, M. (2015). Petrology of a nonindigenous microgranitic clast in polymict ureilite EET 87720: Evidence for formation of evolved melt on an unknown parent body. Meteoritics & Planetary Science, 50, 1613–1623.

    Article  Google Scholar 

  • Bibring, J. P., Langevin, Y., Mustard, J. F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., Berthe, M., Bibring, J. P., Gendrin, A., Gomez, C., Gondet, B., Jouglet, D., Poulet, F., Soufflot, A., Vincendon, M., … Neukum, G. (2006). Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data. Science, 312, 400–404.

    Article  Google Scholar 

  • Bish, D. L., & Duffy, C. J. (1990). Thermogravimetric analysis of minerals. In Thermal Analysis in Clay Science (J. W. Stucki and D. L. Bish, Eds.), The Clay Minerals Society, Chantilly, VA, USA, (pp. 95–189).

    Google Scholar 

  • Bish, D.L., Blake, D.F., Vaniman, D.T., Chipera, S.J., Morris, R.V., Ming, D.W., Treiman, A.H., Sarrazin, P., Morrison, S.M., Downs, R.T., Achilles, C.N., Yen, A.S., Bristow, T.F., Crisp, J.A., Morookian, J.M., Farmer, J.D., Rampe, E.B., Stolper, E.M., Spanovich, N., & the MSL Science Team. (2013). X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale crater. Science, 341, 1238932.

    Article  Google Scholar 

  • Bishop, J. L., & Rampe, E. B. (2016). Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis. Earth and Planetary Science, Letters, 448, 42–48.

    Article  Google Scholar 

  • Bishop, J. L., Rampe, E. B., Bish, D. L., Abidin, Z., Baker, L. L., Matsue, N., & Henmi, T. (2013). Spectral and hydration properties of allophane and imogolite. Clays and Clay Minerals, 61, 57–74.

    Article  Google Scholar 

  • Blake, D.F., Morris, R.V., Kocurek, G., Morrison, S.M., Downs, R.T., Bish, D., Ming, D.W., Edgett, K.S., Rubin, D., Goetz, W., Madsen, M.B., Sullivan, R., Gellert, R., Campbell, I., Treiman, A.H., McLennan, S.M., Yen, A.S., Grotzinger, J., Vaniman, D.T., Chipera, S.J., Achilles, C.N., Rampe, E.B. Sumner, D., Meslin, P.Y., Maurice, S., Forni, O., Gasnault, O., Fisk, M., Schmidt, M., Mahaffy, P., Leshin, L.A., Glavin, D., Steele, A., Freissinet, C., Navarro-Gonzalez, R., Yingst, R.A., Kah, L.C., Bridges, N., Lewis, K.W., Bristow, T.F., Farmer, J.D., Crisp, J.A., Stolper, E.M., Marais, D.J.D., Sarrazin, P., & the MSL Science Team. (2013). Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow. Science, 341, 1239505.

    Article  Google Scholar 

  • Bleeker, P., & Parfitt, R. L. (1974). Volcanic ash and its clay mineralogy at Cape Hoskins, New Britain, Papua New Guinea. Geoderma, 11, 123–135.

    Google Scholar 

  • Carr, M. H. (1996). Water erosion on Mars and its biologic implications. Endeavour, 20, 56–60.

    Article  Google Scholar 

  • Catalano, J. G. (2013). Thermodynamic and mass balance constraints on iron-bearing phyllosilicate formation and alteration pathways on early Mars. Journal of Geophysical Research, Planets, 118, 2124–2136.

    Article  Google Scholar 

  • Cheah, S.-F., Kraemer, S. M., Cervini-Silva, J., & Sposito, G. (2003). Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chemical Geology, 198, 63–75.

    Article  Google Scholar 

  • Childs, C. W., Parfitt, R. L., & Newman, R. H. (1990). Structural studies of Silica Springs allophane. Clay Minerals, 25, 329–341.

    Article  Google Scholar 

  • Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R., & Kaiser, P. (1987). Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Minerals, 22, 207–223.

    Article  Google Scholar 

  • DeFelice, C., Mallick, S., Saal, A. E., & Huang, S. (2019). An isotopically depleted lower mantle component is intrinsic to the Hawaiian mantle plume. Nature Geoscience, 12, 487–492.

    Article  Google Scholar 

  • Dehouck, E., McLennan, S. M., Meslin, P. Y., & Cousin, A. (2014). Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars. Journal of Geophysical Research, Planets, 119, 2640–2657.

    Article  Google Scholar 

  • Dehouck, E., McLennan, S. M., Sklute, E. C., & Darby Dyar, M. (2017). Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: An experimental approach. Journal of Geophysical Research, Planets, 122, 358–382.

    Article  Google Scholar 

  • Denaix, L. (1993). Synthèse et propriétés d'aluminosilicates non lamellaires: l'imogolite et les allophanes, Sciences de la Terre. Université Pierre et Marie Curie (Paris 6), Paris, FRA, p. 223.

  • Dove, P. M., & Crerar, D. A. (1990). Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochimica et Cosmochimica Acta, 54, 955–969.

    Article  Google Scholar 

  • Dove, P. M., & Nix, C. J. (1997). The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochimica et Cosmochimica Acta, 61, 3329–3340.

    Article  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, M. A. H. (2005). Standard methods for the examination of water and wastewater. American Public Health Association.

    Google Scholar 

  • Eggleton, R. A., & Tilley, D. B. (1998). Hisingerite: a ferric kaolin mineral with curved morphology. Clays and Clay Minerals, 46, 400–413.

    Article  Google Scholar 

  • Elwood-Madden, M. E., Madden, A. S., & Rimstidt, J. D. (2009). How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology, 37, 635–638.

    Article  Google Scholar 

  • Elwood-Madden, M. E., Madden, A. S., Rimstidt, J. D., Zahrai, S., Kendall, M. R., & Miller, M. A. (2012). Jarosite dissolution rates and nanoscale mineralogy. Geochimica et Cosmochimica Acta, 91, 306–321.

    Article  Google Scholar 

  • Farmer, V. (1997). Conversion of ferruginous allophanes to ferruginous beidellites at 95°C under alkaline conditions with alternating oxidation and reduction. Clays and Clay Minerals, 45, 591–597.

    Article  Google Scholar 

  • Farmer, V., Krishnamurti, G., & Huang, P. (1991). Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment. Clays and Clay Minerals, 39, 561–570.

    Article  Google Scholar 

  • Frink, C. R., & Peech, M. (1963). Hydrolysis of the aluminum ion in dilute aqueous solutions. Inorganic Chemistry, 2, 473–478.

    Article  Google Scholar 

  • Frushour, A.M. & Bish, D.L. (2017). Laboratory studies of smectite chloritization: applications to the clay mineralogy of Gale crater, Mars. Lunar Planetary Science XLVIII. Lunar Planetary Institute, Houston, #2622(abstr.).

  • Frydenvang, J., Gasada, P. J., Hurowitz, J. A., Grotzinger, J. P., Wiens, R. C., Newsom, H. E., Edgett, K. S., Watkins, J., Bridges, J. C., Maurice, S., Risk, M. R., Johnson, J. R., Rapin, W., Stein, N. T., Clegg, S. M., Schwenzer, S. P., Bedford, C. C., Edwards, P., Mangold, N., … Vasavada, A. R. (2017). Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars. Geophysical Research Letters, 44, 4716–4724.

    Article  Google Scholar 

  • Gainey, S. R., Hausrath, E. M., Hurowitz, J. A., & Milliken, R. E. (2014). Nontronite dissolution rates and implications for Mars. Geochimica et Cosmochimica Acta, 126, 192–211.

    Article  Google Scholar 

  • Gainey, S. R., Hausrath, E. M., Adcock, C. T., Tschauner, O., Hurowitz, J. A., Ehlmann, B. L., Xiao, Y., & Bartlett, C. L. (2017). Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars. Nature Communications, 8, 1230.

    Article  Google Scholar 

  • Gautier, J.-M., Oelkers, E. H., & Schott, J. (2001). Are quartz dissolution rates proportional to B.E.T. surface areas? Geochimica et Cosmochimica Acta, 65, 1059–1070.

    Article  Google Scholar 

  • Gibbons, R. D., Grams, N. E., Jarke, F. H., & Stoub, K. P. (1991). Practical quantitation limits. Chemometrics and Intelligent Laboratory Systems, 12, 225–235.

    Article  Google Scholar 

  • Gislason, S. R., & Oelkers, E. H. (2003). Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochimica et Cosmochimica Acta, 67, 3817–3832.

    Article  Google Scholar 

  • Goodyear, J., & Duffin, W. J. (1961). An X-ray examination of an exceptionally well crystallized kaolinite. Mineralogical Magazine, 32, 902–907.

    Article  Google Scholar 

  • Grotzinger, J.P., Gupta, S., Malin, M.C., Rubin, D.M., Schieber, J., Siebach, K., Sumner, D.Y., Stack, K.M., Vasavada, A.R., Arvidson, R.E., Calef 3rd, F., Edgar, L., Fischer, W.F., Grant, J.A., Griffes, J., Kah, L.C., Lamb, M.P., Lewis, K.W., Mangold, N., Minitti, M.E., Palucis, M., Rice, M., Williams, R.M., Yingst, R.A., Blake, D., Blaney, D., Conrad, P., Crisp, J., Dietrich, W.E., Dromart, G., Edgett, K.S., Ewing, R.C., Gellert, R., Hurowitz, J.A., Kocurek, G., Mahaffy, P., McBride, M.J., McLennan, S.M., Mischna, M., Ming, D., Milliken, R., Newsom, H., Oehler, D., Parker, T.J., Vaniman, D., Wiens, R.C., & Wilson, S.A. (2015). Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 350, aac7575.

  • Gustafsson, J.P., Karltun, E., & Bhattacharya P. (1998). Allophane and imogolite in Swedish soils. Royal Institute of Technology (KTH), Stockholm.

  • Harder, H. (1976). Nontronite synthesis at low temperatures. Chemical Geology, 18, 169–180.

    Article  Google Scholar 

  • Harder, H. (1978). Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26, 65–72.

    Article  Google Scholar 

  • Hausrath, E. M., Ming, D. W., Peretyazhko, T. S., & Rampe, E. B. (2018). Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars. Earth and Planetary Science Letters, 491, 1–10.

    Article  Google Scholar 

  • Helm, L., & Merbach, A. E. (2005). Inorganic and bioinorganic solvent exchange mechanisms. Chemical Reviews, 105, 1923–1959.

    Article  Google Scholar 

  • Henmi, T., Wells, N., Childs, C. W., & Parfitt, R. L. (1980). Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes. Geochimica et Cosmochimica Acta, 44, 365–372.

    Article  Google Scholar 

  • Hisinger, W. (1828). Analyse des mit dem Namen Hisingerit belegten Eisensilicats. Annalen der Physik und Chemie von J.C. Poggendorff Bd, 13, 13–508.

    Google Scholar 

  • Hsu, P. H. (1976). Comparison of iron(III) and aluminum in precipitation of phosphate from solution. Water Research, 10, 903–907.

    Article  Google Scholar 

  • Huertas, F. J., Caballero, E., Jiménez de Cisneros, C., Huertas, F., & Linares, J. (2001). Kinetics of montmorillonite dissolution in granitic solutions. Applied Geochemistry, 16, 397–407.

    Article  Google Scholar 

  • Huffman, E.O. (1960). Rates and mechanisms of dissolution of some ferric phosphates. Soil Science, 1–8.

  • Icenhower, J. P., & Dove, P. M. (2000). The dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength. Geochimica et Cosmochimica Acta, 64, 4193–4203.

    Article  Google Scholar 

  • Ingles, O. G., & Willoughby, D. R. (1967). An occurrence of hisingerite with evidence of its genesis. Soil Science, 104, 383–385.

    Article  Google Scholar 

  • Iyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., & Yuan, G. D. (2012). Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. Applied Clay Science, 56, 77–83.

    Article  Google Scholar 

  • Jeute, T., Baker, L. L., Bishop, J. L., Abidin, Z., & Rampe, E. B. (2021). Spectroscopic analysis of allophane and imogolite samples with variable Fe abundance for characterizing the poorly crystalline components on Mars. American Mineralogist, 106, 527–540.

    Article  Google Scholar 

  • Karube, J., Nakaishi, K., Sugimoto, H., & Fujihira, M. (1996). Size and shape of allophane particles in dispersed aqueous systems. Clays and Clay Minerals, 44, 485–491.

    Article  Google Scholar 

  • Kitagawa, Y. (1973). Substitution of aluminum in allophane by iron. Clay Science, 4, l5l-154.

    Google Scholar 

  • Kitagawa, Y. (1974). Dehydration of allophane and its structural formula. American Mineralogist, 59,1094–1098.

  • Kloprogge, J. T., Evans, R., Hickey, L., & Frost, R. L. (2002). Characterization and Al-pillaring of smectites from Miles, Queensland (Australia). Applied Clay Science, 20, 157–163.

    Article  Google Scholar 

  • Lamb, A. B., & Jacques, A. G. (1938). The slow hydrolysis of ferric chloride in dilute solutions–II. The change in hydrogen ion concentration. Journal of the American Chemical Society, 60, 1215–1225.

    Article  Google Scholar 

  • Lasaga, A. C. (1984). Chemical kinetics of water–rock interactions. Journal of Geophysical Research, 89, 4009–4025.

    Article  Google Scholar 

  • Leshin, L.A., Mahaffy, P.R., Webster, C.R., Cabane, M., Coll, P., Conrad, P.G., Archer Jr., P.D., Atreya, S.K., Brunner, A.E., Buch, A., Eigenbrode, J.L., Flesch, G.J., Franz, H.B., Freissinet, C., Glavin, D.P., McAdam, A.C., Miller, K.E., Ming, D.W., Morris, R.V., Navarro-Gonzalez, R., Niles, P.B., Owen, T., Pepin, R.O., Squyres, S., Steele, A., Stern, J.C., Summons, R.E., Sumner, D.Y., Sutter, B., Szopa, C., Teinturier, S., Trainer, M.G., Wray, J.J., Grotzinger, J.P., & the MSL Science Team. (2013). Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science, 341, 1238937.

    Article  Google Scholar 

  • Liang, D.-T., & Readey, D. W. (1987). Dissolution kinetics of crystalline and amorphous silica in hydrofluoric-hydrochloric acid mixtures. Journal of the American Ceramic Society, 70, 570–577.

    Article  Google Scholar 

  • Meslin, P.Y., Gasnault, O., Forni, O., Schroder, S., Cousin, A., Berger, G., Clegg, S.M., Lasue, J., Maurice, S., Sautter, V., Le Mouelic, S., Wiens, R.C., Fabre, C., Goetz, W., Bish, D., Mangold, N., Ehlmann, B., Lanza, N., Harri, A.M., Anderson, R., Rampe, E., McConnochie, T.H., Pinet, P., Blaney, D., Leveille, R., Archer, D., Barraclough, B., Bender, S., Blake, D., Blank, J.G., Bridges, N., Clark, B.C., DeFlores, L., Delapp, D., Dromart, G., Dyar, M.D., Fisk, M., Gondet, B., Grotzinger, J., Herkenhoff, K., Johnson, J., Lacour, J.L., Langevin, Y., Leshin, L., Lewin, E., Madsen, M.B., Melikechi, N., Mezzacappa, A., Mischna, M.A., Moores, J.E., Newsom, H., Ollila, A., Perez, R., Renno, N., Sirven, J.B., Tokar, R., de la Torre, M., d'Uston, L., Vaniman, D., Yingst, A., & the MSL Science Team (2013). Soil diversity and hydration as observed by ChemCam at Gale crater, Mars. Science, 341.

  • Miller, J. L., Elwood-Madden, A. S., Phillips-Lander, C. M., Pritchett, B. N., & Elwood-Madden, M. E. (2016). Alunite dissolution rates: Dissolution mechanisms and implications for Mars. Geochimica et Cosmochimica Acta, 172, 93–106.

    Article  Google Scholar 

  • Milliken, R.E. & Bish D.L. (2014). Distinguishing hisingerite from other clays and its importance for Mars. Lunar and Planetary Science XLV. Lunar Planetary Institute, Houston, #2251(abstr.).

  • Milliken, R. E., Swayze, G. A., Arvidson, R. E., Bishop, J. L., Clark, R. N., Ehlmann, B. L., Green, R. O., Grotzinger, J. P., Morris, R. V., Murchie, S. L., Mustard, J. F., & Weitz, C. (2008). Opaline silica in young deposits on Mars. Geology, 36, 847.

    Article  Google Scholar 

  • Montarges-Pelletier, E., Bogenez, S., Pelletier, M., Razafitianamaharavo, A., Ghanbaja, J., Lartiges, B., & Michot, L. (2005). Synthetic allophane-like particles: textural properties. Colloids and Colloid Surfaces A: Physicochemical and Engineering Aspects, 255, 1–10.

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. (2nd ed., p. 378). Oxford University Press, New York.

    Google Scholar 

  • Morris, R. V., Golden, D. C., Bell, J. F., Shelfer, T. D., Scheinost, A. C., Hinman, N. W., Furniss, G., Mertzman, S. A., Bishop, J. L., Ming, D. W., Allen, C. C., & Britt, D. T. (2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research, Planets, 105, 1757–1817.

    Article  Google Scholar 

  • Morris, R. V., Vaniman, D. T., Blake, D. F., Gellert, R., Chipera, S. J., Rampe, E. B., Ming, D. W., Morrison, S. M., Downs, R. T., Treiman, A. H., Yen, A. S., Grotzinger, J. P., Achilles, C. N., Bristow, T. F., Crisp, J. A., Des Marais, D. J., Farmer, J. D., Fendrich, K. V., Frydenvang, J., … Schwenzer, S. P. (2016). Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. Proceedings of the National Academy of Sciences of the United States of America, 113, 7071–7076.

    Article  Google Scholar 

  • Morrison, S. M., Downs, R. T., Blake, D. F., Vaniman, D. T., Ming, D. W., Hazen, R. M., Treiman, A. H., Achilles, C. N., Yen, A. S., Morris, R. V., Rampe, E. B., Bristow, T. F., Chipera, S. J., Sarrazin, P. C., Gellert, R., Fendrich, K. V., Morookian, J. M., Farmer, J. D., Des Marais, D. J., & Craig, P. I. (2018). Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars. American Mineralogist, 103, 857–871.

    Article  Google Scholar 

  • Mustoe, G. E. (1996). Hisingerite – A rare iron mineral from walker Valley, Skagit County, Washington. Washington Geology, 24, 14–19.

    Google Scholar 

  • Nagasawa, K. (1978). Weathering of volcanic ash and other pyroclastic materials. Pp. 105–125 in: Clays and Clay Minerals, of Japan (T. Sudo and S. Shimoda, editors). Elsevier Science Publishing Company, Amsterdam.

  • Nagy, K. L., Blum, A. E., & Lasaga, A. C. (1991). Dissolution and precipitation kinetics of kaolinite at 80°C and pH 3: the dependence on solution saturation state. American Journal of Science, 291, 649–696.

    Article  Google Scholar 

  • Ohashi, F., Wada, S. I., Suzuki, M., Maeda, M., & Tomura, S. (2002). Synthetic allophane from high-concentration solutions: nanoengineering of the porous solid. Clay Minerals, 37, 451–456.

    Article  Google Scholar 

  • Olsen, A. A., Hausrath, E. M., & Rimstidt, J. D. (2015). Forsterite dissolution rates in Mg-sulfate-rich Mars-analog brines and implications of the aqueous history of Mars. Journal of Geophysical Research, Planets, 120, 388–400.

    Article  Google Scholar 

  • Ossaka, J., Iwai, S.-I., Kasai, M., Shirai, T., & Hamada, S. (1971). Coexistence states of iron in synthesized iron-bearing allophane (Al2O3-SiO2-Fe2O3-H2O system). Bulletin of the Chemical Society of Japan, 44, 716–718.

    Article  Google Scholar 

  • Palandri, J.L. & Kharaka, Y.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey Water-Resources Investigations Report 04–1068.

  • Parfitt, R. L. (1990). Allophane in New Zealand – a review. Australian Journal of Soil Research, 28, 343–360.

    Article  Google Scholar 

  • Parfitt, R. L. (2009). Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals, 44,135–155.

  • Pickering, R. (2014). Tri-Octahedral Domains and Crystallinity in Synthetic Clays: Implications for Lacustrine Paleoenvironmental Reconstruction. Georgia State University.

    Google Scholar 

  • Potts, P. J., Webb, P. C., & Watson, J. S. (1984). Energy dispersive X-ray fluorescence analysis of silicate rocks for major and trace elements. X-Ray Spectrometry, 13, 2–15.

    Article  Google Scholar 

  • Pritchett, B. N., Madden, M.E.E., & Madden, A.S. (2012). Jarosite dissolution rates and maximum lifetimes in high salinity brines: Implications for Earth and Mars. Earth and Planetary Science Letters, 357, 327–336.

  • Rampe, E.B., Kraft, M.D., Sharp, T.G., Golden, D.C., Ming, D.W., Christensen, P.R., & Ruff S.W. (2011). Detection of allophane on Mars through orbital and in situ thermal infrared spectroscopy. Lunar and Planetary Science XLII. Lunar and Planetary Institute, Houston, #2145(abstract).

  • Rampe, E. B., Kraft, M. D., Sharp, T. G., Golden, D. C., Ming, D. W., & Christensen, P. R. (2012). Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes. Geology, 40, 995–998.

    Article  Google Scholar 

  • Rampe, E. B., Morris, R. V., Archer, P. D., Agresti, D. G., & Ming, D. W. (2016). Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in situ and remote observations. American Mineralogist, 101, 678–689.

    Article  Google Scholar 

  • Rampe, E. B., Ming, D. W., Blake, D. F., Bristow, T. F., Chipera, S. J., Grotzinger, J. P., Morris, R. V., Morrison, S. M., Vaniman, D. T., Yen, A. S., Achilles, C. N., Craig, P. I., Des Marais, D. J., Downs, R. T., Farmer, J. D., Fendrich, K. V., Gellert, R., Hazen, R. M., Kah, L. C., … Thompson, L. M. (2017). Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science, Letters, 471, 172–185.

    Article  Google Scholar 

  • Rampe, E. B., Lapotre, M. G. A., Bristow, T. F., Arvidson, R. E., Morris, R. V., Achilles, C. N., Weitz, C., Blake, D. F., Ming, D. W., Morrison, S. M., Vaniman, D. T., Chipera, S. J., Downs, R. T., Grotzinger, J. P., Hazen, R. M., Peretyazhko, T. S., Sutter, B., Tu, V., Yen, A. S., … Treiman, A. H. (2018). Sand mineralogy within the Bagnold Dunes, Gale Crater, as Observed in situ and from orbit. Geophysical Research Letters, 45, 9488–9497.

    Article  Google Scholar 

  • Rampe, E. B., Blake, D.F., Bristow, T.F., Ming, D.W., Vaniman, D.T., Morris, R.V., Achilles, C.N., Chipera, S.J., Morrison, S.M., Tu, V.M., Yen, A.S., Castle, N., Downs, G.W., Downs, R.T., Grotzinger, J.P., Hazen, R.M., Treiman, A.H., Peretyazhko, T.S., Des Marais, D.J., Walroth, R.C., Craig, P.I., Crisp, J.A., Lafuente, B., Morookian, J.M., Sarrazin, P.C., Thorpe, M.T., Bridges, J.C., Edgar, L.A., Fedo, C.M., Freissinet, C., Gellert, R., Mahaffy, P.R., Newsom, H.E., Johnson, J.R., Kah, L.C., Siebach, K.L., Schieber, J., Sun, V.Z., Vasavada, A.R., Wellington, D., Wiens, R.C., and the MSL Science Team. (2020). Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Geochemistry, 80, 125605.

    Article  Google Scholar 

  • Rimstidt, J. D., & Barnes, H. L. (1980). The kinetics of silica-water reactions. Geochimica et Cosmochimica Acta, 44, 1683–1700.

    Article  Google Scholar 

  • Rozalen, M. L., Huertas, F. J., Brady, P. V., Cama, J., García-Palma, S., & Linares, J. (2008). Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25°C. Geochimica et Cosmochimica Acta, 72, 4224–4253.

    Article  Google Scholar 

  • Sanders, R. L., Washton, N. M., & Mueller, K. T. (2012). Atomic-level studies of the depletion in reactive sites during clay mineral dissolution. Geochimica et Cosmochimica Acta, 92, 100–116.

    Article  Google Scholar 

  • Shayan, A. (1984). Hisingerite material from a basalt quarry near Geelong, Victoria, Australia. Clays and Clay Minerals, 32, 272–278.

    Article  Google Scholar 

  • Shayan, A., Sanders, J. V., & Lancucki, C. J. (1988). Hydrothermal alterations of hisingerite material from a basalt quarry near Geelong, Victoria, Australia. Clays and Clay Minerals, 36, 327–336.

    Article  Google Scholar 

  • Singer, R. B. (1985). Spectroscopic observation of Mars. Advances in Space Research, 5, 59–68.

    Article  Google Scholar 

  • Smith, R. J., Rampe, E. B., Horgan, B. H. N., & Dehouck, E. (2018). Deriving amorphous component abundance and composition of rocks and sediments on Earth and Mars. Journal of Geophysical Research, Planets, 123, 2485–2505.

    Article  Google Scholar 

  • Squyres, S. W., Arvidson, R. E., Ruff, S., Gellert, R., Morris, R. V., Ming, D. W., Crumpler, L., Farmer, J. D., Des Marais, D. J., Yen, A., McLennan, S. M., Calvin, W., Bell, J. F., 3rd., Clark, B. C., Wang, A., McCoy, T. J., Schmidt, M. E., & de Souza Jr., P.A. . (2008). Detection of silica-rich deposits on Mars. Science, 320, 1063–1067.

    Article  Google Scholar 

  • Steiner, M. H., Hausrath, E. M., Elwood-Madden, M. E., Tschauner, O., Ehlmann, B. L., Olsen, A. A., Gainey, S. R., & Smith, J. S. (2016). Dissolution of nontronite in chloride brines and implications for the aqueous history of Mars. Geochimica et Cosmochimica Acta, 195, 259–276.

    Article  Google Scholar 

  • Stillings, L. L., & Brantley, S. L. (1995). Feldspar dissolution at 25°C and pH 3: reaction stoichiometry and the effect of cations. Geochimica et Cosmochimica Acta, 59, 1483–1496.

    Article  Google Scholar 

  • Sun, Z., Zhou, H., Glasby, G., Yang, Q., Yin, X., Li, J., & Chen, Z. (2011). Formation of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. Journal of Asian Earth Sciences, 43, 64–76.

    Article  Google Scholar 

  • Sutter, B., McAdam, A. C., Mahaffy, P. R., Ming, D. W., Edgett, K. S., Rampe, E. B., Eigenbrode, J. L., Franz, H. B., Freissinet, C., Grotzinger, J. P., Steele, A., House, C. H., Archer, P. D., Malespin, C. A., Navarro-González, R., Stern, J. C., Bell, J. F., Calef, F. J., Gellert, R., … Yen, A. S. (2017). Evolved gas analyses of sedimentary rocks and eolian sediment in Gale crater, Mars: Results of the Curiosity rover’s sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. Journal of Geophysical Research, Planets, 122, 2574–2609.

    Article  Google Scholar 

  • Theng, B. K. G., Russell, M., Churchman, G. J., & Parfitt, R. L. (1982). Surface properties of allophane, halloysite, and imogolite. Clays and Clay Minerals, 30, 143–149.

    Article  Google Scholar 

  • Tosca, N. J., Knoll, A. H., & McLennan, S. M. (2008). Water activity and the challenge for life on early Mars. Science, 320, 1204–1207.

    Article  Google Scholar 

  • Treiman, A. H., Bish, D. L., Vaniman, D. T., Chipera, S. J., Blake, D. F., Ming, D. W., Morris, R. V., Bristow, T. F., Morrison, S. M., Baker, M. B., Rampe, E. B., Downs, R. T., Filiberto, J., Glazner, A. F., Gellert, R., Thompson, L. M., Schmidt, M. E., Le Deit, L., Wiens, R. C., … Yen, A. S. (2016). Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). Journal of Geophysical Research, Planets, 121, 75–106.

    Article  Google Scholar 

  • Tu, V. M., Hausrath, E. M., Tschauner, O., Iota, V., & Egeland, G. W. (2014). Dissolution rates of amorphous Al- and Fe-phosphates and their relevance to phosphate mobility on Mars. American Mineralogist, 99, 1206–1215.

    Article  Google Scholar 

  • Van der Gaast, S. J., & Vaars, A. J. (1981). A method to eliminate the background in X-ray-diffraction patterns of oriented clay mineral samples. Clay Minerals, 16, 383–393.

    Article  Google Scholar 

  • Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell 3rd, J. F., Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., Spanovich, N., & the MSL Science Team. (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science, 343, 1243480.

    Google Scholar 

  • Vaniman, D. T., Martínez, G. M., Rampe, E. B., Bristow, T. F., Blake, D. F., Yen, A. S., Ming, D. W., Rapin, W., Meslin, P.-Y., Morookian, J. M., Downs, R. T., Chipera S. J., Morris R. V., Morrison S. M., Treiman A. H., Achilles C. N., Robertson, K., Grotzinger J. P., Hazen R. M., Wiens, R. C., & Sumner, D. Y. (2018). Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 103,1011–1020.

  • Velbel, M. A. (1993). Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: implications for hydrologic control of differences in absolute rates. Chemical Geology, 105, 89–99.

    Article  Google Scholar 

  • Wada, K. (1989). Allophane and imogolite. In: Minerals in Soil Environments (J. B. Dixon and S. B. Weed, (Eds.), Soil Science Society of America, Madison, WI, USA. (pp. 1051–1087).

    Google Scholar 

  • Wada, K., & Yoshinaga, N. (1969). The structure of imogolite. American Mineralogist, 54, 50–71.

    Google Scholar 

  • Weitz, C. M., Bishop, J. L., Baker, L. L., & Berman, D. C. (2014). Fresh exposures of hydrous Fe-bearing amorphous silicates on Mars. Geophysical Research Letters, 41, 8744–8751.

    Article  Google Scholar 

  • Welch, S. A., & Ullman, W. J. (2000). The temperature dependence of bytownite feldspar dissolution in neutral aqueous solutions of inorganic and organic ligands at low temperature (5–35°C). Chemical Geology, 167, 337–354.

    Article  Google Scholar 

  • Wogelius, R. A., & Walther, J. V. (1991). Olivine dissolution at 25°C: effects of pH, CO2, and organic acids. Geochimica et Cosmochimica Acta, 55, 943–954.

    Article  Google Scholar 

  • Yen, A. S., Ming, D. W., Vaniman, D. T., Gellert, R., Blake, D. F., Morris, R. V., Morrison, S. M., Bristow, T. F., Chipera, S. J., Edgett, K. S., Treiman, A. H., Clark, B. C., Downs, R. T., Farmer, J. D., Grotzinger, J. P., Rampe, E. B., Schmidt, M. E., Sutter, B., & Thompson, L. M. (2017). Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale crater, Mars. Earth and Planetary Science Letters, 471, 186–198.

    Article  Google Scholar 

  • Zhu, C., Liu, Z., Zhang, Y., Wang, C., Scheafer, A., Lu, P., Zhang, G., Georg, R. B., Yuan, H., & Rimstidt, J. D. (2016). Measuring silicate mineral dissolution rates using Si isotope dating. Chemical Geology, 445, 146–163.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the following people for their contributions to this research: Brad Sutter, Lisa Danielson, Joanna Hogancamp, Toluwalope Bamisile, Chris Adcock, Seth Gainey, Peter Sbraccia, Arlaine Sanchez, Ngoc Luu, Dave Hatchett, Minghua Ren, Michael Strange, and Richard Panduro-Allanson. They also thank Editor-in-Chief Professor Joseph W. Stucki, the associate editors of Clays and Clay Minerals, and journal reviewers for their insightful comments on this manuscript. This work was supported by the NASA Mars Data Analysis Program (grant #80NSSC17K0581), the University of Nevada, Las Vegas Faculty Opportunity Award, the University of Nevada, Las Vegas Doctoral Award, the Geological Society of America Graduate Research Grant, the University of Nevada, Las Vegas Graduate and Professional Student Association research and travel grants, and the Southwest Travel Award.

Funding

See Acknowledgments Section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. RALSTON.

Ethics declarations

Conflict of Interest

S. J. Ralston conducted this research while employed as a graduate student at the University of Nevada, Las Vegas and was employed by Jacobs (www.jacobs.com) prior to manuscript submission (multiple affiliation). Elisabeth Hausrath, Oliver Tschauner, Elizabeth Rampe, Tanya Peretyazhko, Roy Christoffersen, Christopher DeFelice, and Hyejeong Lee declare that they have no conflicts to report.

Additional information

(Received 16 September 2020; revised 11 March 2021; AE: F. Javier Huertas)

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RALSTON, S.J., HAUSRATH, E.M., TSCHAUNER, O. et al. DISSOLUTION RATES OF ALLOPHANE WITH VARIABLE Fe CONTENTS: IMPLICATIONS FOR AQUEOUS ALTERATION AND THE PRESERVATION OF X-RAY AMORPHOUS MATERIALS ON MARS. Clays Clay Miner. 69, 263–288 (2021). https://doi.org/10.1007/s42860-021-00124-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00124-x

Keywords

Navigation