Skip to main content
Log in

Platinum Content and Formation Conditions of the Sulfide PGE–Cu–Ni Nyud-II Deposit of the Monchegorsk Pluton, Kola Peninsula, Russia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The article presents the results of studying the chemical composition of ore-bearing rocks, as well as the mineralogy of base metal sulfides and platinum group elements (PGE), of the Nyud-II sulfide PGE–Cu–Ni deposit in the southwestern part of the Nyud massif of the Monchegorsk Pluton (Monchepluton). The ores of the deposit are represented by vein-disseminated and nest-schlieren types. They are characterized by significant predominance of Pd over Pt, fractionation of low-melting PGE (PPGE subgroup) with respect to high-melting ones (IPGE subgroup), and close correlations of Ni and Cu with S in the presence of increased As, Se, Te, and Bi contents. The S/Se ratios in ore (3470−3530) correspond to the mantle values. Among the platinum group minerals (PGM), the most widespread are Pt and Pd bismuth–tellurides and tellurides (merenskyite, michenerite, and moncheite), subordinate amounts of Pt–Fe alloys and sperrylite, and native osmium and Ir, Rh, and Pt sulfoarsenides (irarsite, hollingworthite, and platarsite). The formation of ore sulfide concentrations resulted from separation of an immiscible sulfide liquid upon cooling of a sulfur-saturated silicate magma with a mafic composition. Subsequent fractional crystallization of the sulfide liquid contributed to the uneven distribution of Ni, Cu, and PGE. PGE–sulfide ore formation took place in a fairly wide temperature range, starting at 1100−1000°C and ending at 600−400°C. At an early stage, IPGE minerals (native osmium and erlichmanite) separated. Upon cooling to a temperature of 1000−900°C, the sulfide liquid fractionated with the formation of monosulfide solid solution (mss), in which compatible IPGE were concentrated, and a residual sulfide liquid enriched in Ni, Cu, PtPGE, and chalcophile elements. With a further decrease in temperature (to 600°C), Pt–Fe alloys, sperrylite, and IPGE + Pt sulfoarsenides crystallized, with separation of the residual sulfide melt enriched in Cu, PPGE and chalcophile elements. At 600−400°C, ore formation ended with the complete crystallization of base metal sulfides and the formation of Pt and Pd bismuth–tellurides and tellurides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

Notes

  1. A.N. Dedyukhin, Report on the appraisal and exploration results at the Sopcheozerskoe chromium ore deposit for 1999–2002. Materials of MurTFGI, 2005.

  2. V.N. Ivanchenko, Report on the results of PGM appraisal works on the southern flank of the Vuruchuayvench deposit, PGM appraisal works at the South Sopcha ore occurrence and additional exploration of the Bed 330 copper–nickel ore deposit in the Monchegorsk ore district in 2007–2009. Materials of MurTFGI, 2009.

  3. O.V. Kazanov, Report on the geological study of the Monchetundra area for platinum group metals and feasibility study for temporary exploration conditions of the Monchetundra deposit. Materials of MurTFGI, 2016.

  4. S.M. Rutshtein, Consolidated geological report on geological prospecting, geological exploration, and geophysical works at the Monchegorsk nickel-bearing pluton as of January 1, 1964, carried out by the Monchegorsk geological survey crew. Materials of MurTFGI, 1964.

REFERENCES

  1. Analizy mineralov medno–nikelevykh mestorozhdenii Kol’skogo poluostrova (Analyses of Minerals of the Copper–Nickel Deposits of the Kola Peninsula), Yakovlev, Yu.N., and Yakovleva, A.K., Eds., (KolFAN SSSR, Apatity, 1983).

  2. Arnold, R.G., Evidence for liquid immiscibility in the system FeS–S, Econ. Geol., 1971, vol. 66, pp. 1121–1130.

    Article  Google Scholar 

  3. Barkov, A.Y., Fleet, M.E., Martin, R.F., and Alapieti, T.T., Zoned sulfides and sulfarsenides of the platinum-group elements from the Penikat layered complex, Finland, Can. Mineral., 2004, vol. 42, pp. 515–537.

    Article  Google Scholar 

  4. Barkov, A.Y. and Cabri, L.J., Variations of major and minor elements in Pt–Fe alloy minerals: a review and new observations, in New Results and Advances in PGE Mineralogy in Various Ni–Cu–Cr–PGE Ore System, Barkov, A.Y. and Zaccarini, F, Eds. (Minerals, Basel, 2019), pp. 204–218. https://doi.org/10.3390/min9010025

    Google Scholar 

  5. Barnes, S.-J., Couture, J.-F., Sawyer, E.W., and Bouchaib, C., Nickel–copper occurrences in the Belleterre–Angliers belt of the Pontiac subprovince and the use of Cu–Pd ratios in interpreting platinum-group element distributions, Econ. Geol., 1993, vol. 88, pp. 1402–1418.

    Article  Google Scholar 

  6. Barnes, S.-J., Cox, R., and Zientek, M., Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia, Contrib. Mineral. Petrol., 2006, vol. 152, no. 2, pp. 187–200. https://doi.org/10.1007/s00410-006-0100-9

    Article  Google Scholar 

  7. Barton, P.B. Solid solutions in the systems Cu-Fe-S. Part 1. The Cu-S and CuFe-S joins, Econ. Geol., 1973, vol. 68, pp. 455–463

  8. Bartenev, I.S. and Dokuchaeva, V.S., Geological–structural features and conditions of formation of the Nyud-II deposits, in Osnovnye i ul’traosnovnye porody Kol’skogo poluostrova i ikh metallogeniya (Basic and Ultrabasic Rocks of the Kola Peninsula and their Metallogeny), Gorbunov, G.I., Ed., (KolFAN SSSR, Apatity, 1975), pp. 144–158.

  9. Barton, P.B., Solid solutions in the systems Cu-Fe-S. Part, I., The Cu–S and CuFe–S joins, Econ. Geol., 1973, vol. 68, pp. 455–463.

    Google Scholar 

  10. Blagorodnye metally (Noble Metals), Savitskii, E.M., Ed. (Metallurgiya, Moscow, 1984).

    Google Scholar 

  11. Chashchin V.V. and Petrov, S.V., Low-sulfide PGE ore in the Volchetundra gabbro–anorthosite pluton, Kola Peninsula, Russia, Geol. Ore Deposits, 2013, vol. 55, no. 5, pp. 357–382.

    Article  Google Scholar 

  12. Chashchin, V.V., Galkin, A.S., Ozeryanskii, V.V., and Dedyukhin, A.N., Sopcha Lake chromite deposit and its platinum potential, Monchegorsk Pluton, Kola Peninsula (Russia), Geol. Ore Deposits, 1999, vol. 41, no. 6, pp. 460–468.

    Google Scholar 

  13. Chashchin, V.V., Bayanova, T.B., Mitrofanov, F.P., and Serov, P.A., Low-sulfide PGE ores in Paleoproterozoic Monchegorsk Pluton and massifs of its southern framing, Kola Peninsula, Russia: geological characteristic and isotopic geochronological evidence of polychronous ore-magmatic systems, Geol. Ore Deposits, 2016, vol. 58, no. 1, pp. 37–57. https://doi.org/10.7868/S0016777016010020

    Article  Google Scholar 

  14. Chashchin, V.V., Petrov, S.V., and Drogobuzhskaya, S.V., Loypishnyun low-sulfide Pt–Pd deposit of the Monchetundra basic massif, Kola Peninsula, Russia, Geol. Ore Deposits, 2018, vol. 60, no. 5, pp. 418–448. https://doi.org/10.1134/S1075701518050021

    Article  Google Scholar 

  15. Chyi, L.L. and Crocket, J.H., Partition of platinum, palladium, iridium and gold among coexisting minerals from the deep ore zone, Strathcona Mine, Sudbery, Ontario, Econ. Geol., 1976, vol. 71, pp. 1196–1205.

    Article  Google Scholar 

  16. Dare, S.A.S., Barnes, S.-J., and Prichard, H.M., Platinum-group element (PGE)-bearing pyrites in pyrrhotite-rich sulfides from McCreedy and Creighton Ni–Cu–PGE sulfide deposits, Sudbury, Canada, 11th International Platinum Symposium, Jugo, P.J., Lesher, C.M., and Mungall, J.E., Eds., Sudbury, 2010a.

  17. Dare, S.A.S., Barnes, S.–J., and Prichard, H.M., The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide Deposit, Sudbury, Canada and the origin of palladium in pentlandite, Miner. Deposita, 2010b, vol. 45, pp. 765–793. https://doi.org/10.1007/s00126-010-0295-6

    Article  Google Scholar 

  18. Dedeev, A.V., Khashkovskaya, N.N., and Galkin, A.S., PGE-mineralization of the Monchegorsk layered mafic–ultramafic intrusion of the Kola Peninsula, in The Geology, Geochemistry, Mineralogy and Mineral Benefication of Platinum-Group Elements (Canadian Institute of Mining, Metallurgy and Petroleum, 2002), Cabri, L.J., Ed., vol. 54, pp. 569–577.

    Google Scholar 

  19. Distler, V.V. and Laputina, I.P., Unusual PGM mineral assemblage from the layered gabbro–norite–lherzolite massif, Kola Peninsula, Izv. Akad. Nauk SSSR, Ser.Geol., 1981, no. 2, pp. 103–115.

  20. Distler, V.V., Smirnov, A.V., Grokhovskaya, T.L., Filimonova, A.A., and Muravitskaya, G.N., Stratification, cryptic layering, and conditions of formation of the sulfide mineralization of differentiated trap intrusions, in Usloviya obrazovaniya magmaticheskikh rudnykh mestorozhdenii (Conditions of Formation of Magmatic Ore Deposits), Smir-nov, V.I., Ed., Nauka, Moscow, 1979, pp. 211–269.

    Google Scholar 

  21. Distler, V.V., Grokhovskaya T.L., Evstigneeva T.L. Petrologiya sul’fidnogo magmaticheskogo rudoobrazovaniya (Petrology of Sulfide Magmatic Ore Formation), Nauka, Moscow, 1988.

  22. Duran, C.J., Barnes, S.-J., and Corkery, J.T., Geology, petrography, geochemistry and genesis of sulfide-rich pods in the Lac des Iles palladium deposits, western Ontario, Canada, Miner. Deposita, 2016, vol. 51, pp. 509–532. https://doi.org/10/1007/s00126-015-0622-z

    Article  Google Scholar 

  23. Ebel, D. and Naldrett, A.J., Fractional crystallization of sulfide ore liquids at high temperature, Econ. Geol., 1996, vol. 91, pp. 607–621.

    Article  Google Scholar 

  24. Ebel, D. and Naldrett, A.J., Crystallization of sulfide liquids and the interpretation of ore composition, Intraplate Magmatism and Related Mineralisation: Proceedings of IGCP Project 336 Conference, Can. J. Earth Sci., 1997, vol. 34, no. 4, pp. 352–365.

    Article  Google Scholar 

  25. Eliseev, E.N., Disseminated sulfide mineralization of the Sopcha ore layer, in Ul’traosnovnye i osnovnye intruzii i sul’fidnye medno–nikelevye mestorozhdeniya Monchi (Ultramafic and Mafic Intrusions and Sulfide Copper–Nickel Deposits of Moncha), Eliseev, N.A., Ed., AN SSSR, Leningrad, 1953, pp, 112–144.

  26. Eliseev, N.A., Eliseev, E.N., Kozlov, E.K., Lyalin, P.V., and Maslennikov, V.A., Geologiya i rudnye mestorozhdeniya Monchegorskogo plutona (Geology and Ore Deposits of the Monchegorsk Pluton), AN SSSR, Leningrad, 1956.

  27. Evstigneeva, T.L., Phases in the Pt–Fe system. Vestn. Otd. Nauk Zemle RAS, 2009, no. 1. https://doi.org/10.2205/2009NZ000003

  28. Fleet, M.E., Chryssoulis, S.L., Stone, W.E., and Weisener, C.G., Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S–system: experiments on the fractional crystallization of sulfide melt, Contrib. Mineral. Petrol., 1993, vol. 115, pp. 36–44.

    Article  Google Scholar 

  29. Furukawa, Y. and Barnes, H.L., Reactions forming smythite, Fe9S11, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 19, pp. 3581–3591.

    Article  Google Scholar 

  30. Garuti, G., Fiandri, P., and Rossi, A., Sulfide composition and phase relations in the Fe–Ni–Cu ore deposits of the Ivrea–Verbano basic complex (Western Alps, Italy), Miner. Deposita, 1986, vol. 22, pp. 22–34.

    Google Scholar 

  31. Genkin, A.D., Distler, V.V., Gladyshev, G.D., Filimo-nova, A.A., Evstigneeva, T.L., Kovalenker, V.A., Laputina, I.P., Smirnov, A.V., and Grokhovskaya, T.L., Sul’fidnye medno-nikelevye rudy noril’skikh mestorozhdenii (Sulfide–Nickel Ores of the Norilsk Deposits), Nauka, Moscow, 1981.

  32. Glotov, A.I. and Orsoev, D.A., Distribution of the noble metals in the platiniferous Cu–Ni–sulfide ores of the Monchegorsk Complex, Kola Peninsula, Dokl. Earth Sci., 1996, vol. 347, no. 2, pp. 492–494.

    Google Scholar 

  33. Godel, B., Platinum-group element deposits in layered intrusions: recent advances in the understanding of the ore forming processes, in Layered Intrusions, Charlier B., Namur O., Latypov R., Tegner C. Eds., Springer, 2015, pp. 379–432. https://doi.org/10.1007/978-94-017-9652-1_1

    Book  Google Scholar 

  34. Godlevskii, M.N. and Likhachev, A.P., Conditions of generation and crystallization of ore–bearing magmas forming copper–nickel deposits, in Osnovnye parametry protsessov endogennogo rudoobrazovaniya (Main Parameters of Endogenous Ore Formation), Kuznetsov, V.A., Ed., Nauka, Novosibirsk, 1979, vol. 1, pp. 109–118.

    Google Scholar 

  35. Gorbunov, G.I., Astaf’ev, Yu.A., Bartenev, I.S., Goncharov, Yu.V., and Yakovlev, Yu.N., Struktura medno–nikelevykh rudnykh polei i mestorozhdenii Kol’skogo poluostrova (Structure of Copper–Nickel Ore Fields and Deposits of the Kola Peninsula), Nauka, Leningrad, 1978.

  36. Gorbunov, G.I., Yakovlev, Yu.N., Goncharov, Yu.V., Gorelov, V.A., and Tel’nov, V.A., Nickel–bearing districts of the Kola Peninsula, in Medno–nikelevye mestorozhdeniya Baltiiskogo shchita (Copper–Nickel Deposits of the Baltic Shield), Gorbunov, G.I., Papunen, Kh., Eds., Nauka, Leningrad, 1985, pp. 27–93.

    Google Scholar 

  37. Grokhovskaya, T.L. and Laputina, I.P., PGE mineralization of some layered intrusions of the Kola Peninsula, in Nikelenosnost’ bazit–giperbazitovykh kompleksov Karelo–Kol’skogo regiona (Nickel Potential of the Mafic–Ultramafic Complexes of the Karelia–Kola Region), Mitrofanov, F.P. and Gorbunov, G.I., Eds., KolFAN SSSR, Apatity, 1988, pp. 69–73.

  38. Grokhovskaya, T.L., Bakaev, G.F., Shelepina, E.P., Lapina, M.I., Laputina, I.P., and Muravitskaya, G.N., PGE mineralization in the Vuruchuaivench gabbronorite massif, Monchegorsk Pluton (Kola Peninsula, Russia), Geol. Ore Deposits, 2000, vol. 42, no. 2, pp. 133–146.

    Google Scholar 

  39. Grokhovskaya, T.L., Ivanchenko, V.N., Karimova, O.V., Griboedova, I.G., and Samoshnikova, L.A., Geology, mineralogy, and genesis of PGE mineralization in the South Sopcha Massif, Monchegorsk Complex, Russia, Geol. Ore Deposits, 2012, vol. 54, no. 5, pp. 347–369.

    Article  Google Scholar 

  40. Hattori, K.H., Arai, S., and Clarke, D.B., Selenium, tellurium, arsenic and antimony contents of primary mantle sulfides, Can. Mineral., 2002, vol. 40, pp. 637–650. https://doi.org/10.2113/gscanmin.40.2.637

    Article  Google Scholar 

  41. Helmy, H.M. and Bragagni, A., Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide–sulfide systems above 1020oC, Geochim. Cosmochim. Acta, 2017, vol. 217, pp. 169–183. https://doi.org/10.1016/j.gca.2017.01.040

    Article  Google Scholar 

  42. Helmy, H.M., Ballhaus, C., Wohlgemuth-Ueberwasser, C., Fonseca, R.O.C., and Laurenz, V., Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt – application to magmatic sulfide deposits, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 6174–6179. https://doi.org/10.1016./j.gca.2010.08.009

    Article  Google Scholar 

  43. Holwell, D.A. and McDonald, I., A review of the behavior of platinum group elements within natural magmatic sulfide ore systems, Platinum Metals Rev., 2010, vol. 54, no. 1, pp. 26–36.

    Article  Google Scholar 

  44. Karykowski, B.T., Maier, W.D., Groshev, N.Y., Barnes, S.-J., Pripachkin, P.V., McDonald, I., and Savard, D., Critical controls on the formation of contact-style PGE–Ni–Cu mineralization: evidence from the Paleoproterozoic Monchegorsk Complex, Kola region, Russia, Econ. Geol., 2018, vol. 113, pp. 911–935. https://doi.org/10.5382/econgeo/2018.4576

    Article  Google Scholar 

  45. Keays, R.R. and Crocket, J.H., A study of precious metals in the Sudbury nickel irruptive ores, Econ. Geol., 1970, vol. 65, pp. 438–450.

    Article  Google Scholar 

  46. Khimicheskie analizy porod bazit–giperbazitovykh kompleksov dokembriya Kol’skogo poluostrova (Chemical Analyses of Rocks of the Precambrian Mafic–Ultramafic Complexes of the Kola Peninsula) Gorbunov, G.I., Ed., KolFAN SSSR, Apatity, 1982.

  47. Kolonin G.R., Orsoev D.A., Sinyakova E.F., et al., The Ni/Fe ratio in pentlandite as an indicator of sulfur fugacity during the formation of PGE-bearing sulfide mineralization of the Ioko–Dovyren Massif, Dokl. Earth Sci., 2000, vol. 370, no. 1, pp. 75–79.

    Google Scholar 

  48. Kozlov, E.K., Estestvennye ryady porod nikelenosnykh intruzii i ikh metallogeniya (Natural Rock Series of the Nickel-Bearing Intrusions and their Metallogeny), Nauka, Leningrad, 1973.

  49. Kracek, F.C., Ksanda, C.J., and Cabri, L.J., Phase relations in the silver–tellurium system, Am. Mineral., 1966, vol. 51, pp. 14–28.

    Google Scholar 

  50. Kullerud, G., Thermal stability of pentlandite, Can. Mineral., 1963, vol. 7, pp. 353–366.

    Google Scholar 

  51. Kullerud, G. and Yoder, H.S., Pyrite- stability relations in the Fe–S-system, Econ. Geol., 1959, vol. 54, pp. 533–572.

    Article  Google Scholar 

  52. Likhachev, A.P., Genetic models of sulfide–nickel formations in relation with other endogenous formations, in Rudoobrazovanie i geneticheskie modeli endogennykh rudnykh formatsii (Ore Formation and Genetic Models of Endogenous Ore Formations), Obolenskii, A.A., Sotnikov, V.I., and Sharapov, V.N., Eds., Nauka, Novosibirsk, 1988, pp. 158–166.

    Google Scholar 

  53. Makovicky, E., Ternary and quaternary phase systems with PGE, in The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements, Cabri L.J., Ed., Canad. Ins. Mining Metal. Petr., Ottava, 2002, vol. 54, pp. 131–175.

    Google Scholar 

  54. Mansur, E.T., Barnes, S.–J., and Duran, C.J., Textural and compositional evidence for the formation of pentlandite via peritectic reaction: implications for the distribution of highly siderophile elements, Geology, 2019, vol. 47, pp. 351–354.

    Article  Google Scholar 

  55. Mansur, E.T., Barnes, S.–J., Duran, C.J., and Sluzhenikin, S.F., Distribution of chalcophile and platinum-group elements among pyrrhotite, pentlandite, chalcopyrite and cubanite from the Noril’sk–Talnakh ores: implications for the formation of platinum-group minerals, Miner. Deposita, 2020, vol. 55, pp. 1215–1232.

    Article  Google Scholar 

  56. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  57. Mineralogiya medno–nikelevykh mestorozhdenii Kol’skogo poluostrova (Mineralogy of Copper–Nickel Deposits of the Kola Peninsula), Gorbunov, G.I., Ed., Nauka, Leningrad, 1981.

  58. Misra, K.C. and Fleet, M.E., Chemical composition and stability of violarite, Econ. Geol., 1974, vol. 69, pp. 391–403.

    Article  Google Scholar 

  59. Mungall, J.E., Andrews, D.R.A., Cabri, L.J., Sylvester, P.J., and Tubrett, M., Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 4349–4360.

    Article  Google Scholar 

  60. Naldrett, A.J., A portion of the Fe–S–O and its application to sulfide ore magmas, J. Petrol., 1969, vol. 10, pp. 171–201.

    Article  Google Scholar 

  61. Naldrett, A.J., Nickel sulfide deposits; their classification and genesis, with special emphasis on deposits of volcanic association, Canad. Inst. Mining Metallurgy Trans., 1973, vol. 76, pp. 183–201.

    Google Scholar 

  62. Naldrett, A.J., Nickel sulfide deposits: classification, composition, and genesis, in Genesis of Mineral Deposits, Skinner, B.J. Jr., Ed., Mir, Moscow, 1984, vol. 2, pp. 253–243.

  63. Naldrett, A.J., Magmaticheskie sul’fidnye mestorozhdeniya medno–nikelevykh i platinometal’nykh rud (Magmatic Sulfide Deposits of the Copper–Nickel and Platinum Ores) SPGU, Saint Petersburg, 2003.

  64. Naldrett, A.J., Magmatic Sulfide Deposits. Geology, Geochemistry and Exploration, Springer-Verlag, Berlin, Heidelberg, 2004.

    Book  Google Scholar 

  65. Naldrett, A.J., From the mantle to the bank: the life of a Ni–Cu–(PGE) sulfide deposit, S. Afr. J. Geol, 2010, vol. 113, pp. 1–32. https://doi.org/10.2113/gssaig.113.1-1

    Article  Google Scholar 

  66. Naldrett, A.J., Innes, D.G., Sowa, J., and Gorton, M., Compositional variation within and between five Sudbury ore deposits, Econ. Geol., 1982, vol. 77, pp. 1519–1534.

    Article  Google Scholar 

  67. Neradovskii, Yu.N., Rundkvist, T.V., Galkin, A.S., and Kliment’ev, V.N., On problem of the platinum potential of the Mt. Sopcha “ore layer-330” and its economic use, Monchepluton, Vestn. Murmansk. Gos. Tekhn. Univ., 2002, vol. 5, no. 1, pp. 85–91.

  68. Orsoev, D.A., Rezhenova, S.A., and Bogdanova, A.N., Sopcheite Ag4Pd3Te4 – a new mineral from copper–nickel ores of the Monchegorsk pluton, Zap. Vsesoyuz. Mineral. O-va, 1982, vol. 111, no. 1, pp. 114–117.

    Google Scholar 

  69. Orsoev, D.A., Konnikov, E.G., and Zaguzin, G.N., Mineralization of the Sopcha peridotite layer, Monchegorsk district, Zap. Ross. Mineral. O-va, 1994, vol. 123, no. 3, pp. 26–40.

    Google Scholar 

  70. Petrov, S.V., Methodological and terminological aspects of study of gold speciation in the ores, Obogashchenie rud, 2005, no. 2, pp. 27–30.

  71. Queffurus, M. and Barnes, S.–J., A review of sulfur to selenium ratios in magmatic nickel–copper and platinum-group element deposits, Ore Geol. Rev., 2015, vol. 69, pp. 301–324. https://doi.org/10.1016/j.oregeorev.2015.02.019

    Article  Google Scholar 

  72. Rassloennye intruzii Monchegorskogo rudnogo raiona: petrologiya, orudenenie, izotopiya, glubinnoe stroenie (Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, Isotopy, and Deep Structure), Mitrofanov, F.P., Smol’kin, V.F., Eds., KSC RAS, Apatity, 2004.

  73. Sharkov, E.V., “Critical horizon” of the Monchegorsk pluton is an additional intrusive phase, Zap. Vsesoyuz. Mineral. O-va, 1982, vol. 111, no. 6, pp. 656–663.

  74. Sharkov, E.V., Formirovanie rassloennykh intruzivov i svyazannogo s nimi orudeneniya (Formation of Layered Intrusions and Related Mineralization), Nauchnyi Mir, Moscow, 2006.

  75. Sharkov E.V., Chistyakov A.V. Geological and petrological aspects of Ni–Cu–PGE mineralization in the Early Paleoproterozoic Monchegorsk layered mafic–ultramafic complex, Kola Peninsula, Geol. Ore Deposits, 2014, vol. 56, no. 3, pp. 147–168.

    Article  Google Scholar 

  76. Sinyakova, E.F., Processes of Mineral Formation in the Fe–Ni–S System with PGM Admixture: Experimental Data, Extended Abstract of Doctoral (Geol-Min.) Dissertation, IGM SO RAN, Novosibirsk, 2007.

  77. Sinyakova, E.F., Kosyakov, V.I., and Kolonin, G.R., Behavior of platinum metals during crystallization of melts of the Fe–Ni–S system (section FexNi0.49 – xS0.51), Tr. IGiG Sib. Otd. AN SSSR, 2001, vol. 42, no. 9, pp. 1354–1370.

    Google Scholar 

  78. Sinyakova, E.F., Kosyakov V.I., Kokh, K.A., and Karmanov, N.S., Influence of arsenic on the noble metal behavior during fractional crystallization of Cu–Fe–Ni–sulfide phases, Vestn. Otd. Nauk Zemle, 2011, vol. 3. https://doi.org/10.2205/2011NZ000217

  79. Slansky, E., Johan, Z., Ohnenstetter, M., Barron, L.M., and Suppel, D., Platinum mineralization in the Alaskan-type intrusive complexes near Fifield, N.S.W., Australia. Part 2. Platinum-group minerals in placer deposits at Fifield, Mineral. Petrol., 1991, vol. 43, pp. 161–180.

    Article  Google Scholar 

  80. Subbotin, V.V., Gabov, D.A., Korchagin, A.U., and Savchenko, E.E., Gold and silver in PGM ores of the Fedorova–Pana intrusive complex, Vestn. Kol’sk. Nauchn. Ts, Ross. Akad. Nauk, 2017, no. 1, pp. 53–65.

  81. Sugaki, A. and Kitakaze, A., High form of pentlandite and its thermal stability, Am. Mineral., 1998, vol. 83, pp. 133–140.

    Article  Google Scholar 

  82. Vaasjoki, O., Hakli, T.A., and Tontti, M., The effect of cobalt on the thermal stability of pentlandite, Econ. Geol., 1974, vol. 69, pp. 549–551.

    Article  Google Scholar 

  83. Vaughan, D.J. and Craig, J.R., Mineral Chemistry of Metal Sulfides (Cambridge Univ., Cambridge, 1979).

    Google Scholar 

  84. Voloshin, A.V., Chernyavskii, A.V., and Voitekhovskii, Yu.L., Telluride mineralization in the gold–bearing occurrences of the Panarechka volcanotectonic structure, Vestn. Kol’sk. Nauch. Ts. Ross. Akad. Nauk, 2012, no. 1, pp. 66–79.

  85. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock–forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  86. Yakovlev, Yu.N. and Dokuchaeva, V.S., PGM mineralization of the Monchegorsk pluton, in Geologiya i genezis mestorozhdenii platinovykh metallov (Geology and Genesis of PGM Deposits), Laverov, N.P. and Distler, V.V., Eds., Nauka, Moscow, 1994, pp. 79–86.

    Google Scholar 

  87. Yakovlev, Yu.N., Yakovleva, A.K., Neradovskii, Yu.N., Osokin, A.S., Balabonin, N.L., Dokuchaeva, V.S., Distler, V.V., and Filimonova, A.A., Mineralogiya medno–nikelevykh mestorozhdenii Kol’skogo poluostrova (Mineralogy of Copper–Nickel Deposits of the Kola Peninsula) Nauka, Leningrad, 1981.

  88. Yakovlev, Yu.N., Distler, V.V., Mitrofanov, F.P., Razhev, S.A., Grokhovskaya, T.L., and Veselovsky, N.N., Mineralogy of PGE in the mafic–ultramafic massifs of the Kola Region, Mineral. Petrol., 1991, vol. 43, pp. 181–192.

    Article  Google Scholar 

  89. Yushko–Zakharova, O.E., Ivanov, V.V., Razina, I.S., and Chernyaev, L.A. Geokhimiya, mineralogiya i metody opredeleniya elementov gruppy platiny (Geochemistry, Mineralogy, and Methods of Platinum-Group Determination), Nedra, Moscow, 1970.

  90. Yushko–Zakharova, O.E., Platinonosnost’ rudnykh mestorozhdenii (PGE Potential of Ore Deposits), Nedra, Moscow, 1975.

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the reviewers of the journal Geology of Ore Deposits for constructive criticism, which aided in significantly improving the original version of the article.

Funding

Research was carried out under topic no. 0226-2019-0054 was partially supported by the Russian Foundation for Basic Research (projects nos. 15-35-20501, 18-05-70082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Chashchin, S. V. Petrov, D. V. Kiseleva or Ye. E. Savchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chashchin, V.V., Petrov, S.V., Kiseleva, D.V. et al. Platinum Content and Formation Conditions of the Sulfide PGE–Cu–Ni Nyud-II Deposit of the Monchegorsk Pluton, Kola Peninsula, Russia. Geol. Ore Deposits 63, 87–117 (2021). https://doi.org/10.1134/S1075701521020021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521020021

Keywords:

Navigation