Skip to main content
Log in

Experimental Investigation of the Evolution of Fuel Clad Ballooning Using Real-Time X-ray Imaging and Its Microstructural Studies

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Clad ballooning, which is a plastic instability, results in sudden large deformation and thereby coolant flow blockage in case of transients in a nuclear reactor. We report the experimental findings in the present paper. Experiments have been carried out to investigate the effect of ballooning in fast reactors, where Fe-based alloys are used as clad material. Real-time X-ray imaging captured the evolution of ballooning and rupture, which occurred within a short duration. It was seen that there was material instability until the point of onset of ballooning and thereafter the plastic instability was observed. Microstructural investigations carried out on various regions of the failed specimen showed that there is significant grain coarsening and a drastic drop in the hardness values in the ballooned region when compared to the unaffected region. Fractography tests of the ballooned specimen confirmed the presence of fine dimples at the ballooned region, which is a signature of ductile failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kim J H, Lee M H, Jeong Y H, and Lim J G, Nucl Eng Des 238 (2008) 1441.

    Article  CAS  Google Scholar 

  2. Ragheb M, Internet, https://mragheb.com/Clad%20Ballooning%20Accident.pdf (2010).

  3. Gupta A, Ballooning in Fuel Clads: A Study in the Constitutive Theory and Stability of Thermoplastic Response, IGCAR—IIT Kanpur Collaborative Project (2018).

  4. Hill R, J Mech Phys Solids 6 (1958) 236.

    Article  Google Scholar 

  5. Lin E I H, in 4th International Conference on Structural Mechanics in Reactor Technology, San Francisco (1977).

  6. Lin I H, Hirth J P, and Hart E W, Acta Metall 29 (1981) 819.

    Article  CAS  Google Scholar 

  7. Hill R, and Hutchinson J W, J Mech Phys Solids 23 (1975) 239.

    Article  Google Scholar 

  8. Larsson M, Needleman A, Tvergaard V, and Storakers B, J Mech Phys Solids 30 (1982) 121.

    Article  Google Scholar 

  9. Hill R, Hecker S S, and Stout M G, Int J Solids Struct 31 (1994) 2999.

    Article  Google Scholar 

  10. Erbacher F, Neitzel H, and Wiehr K, Am. Soc. Test. Mater (1979) 429.

  11. Grandjean C, Nucl Eng Des 237 (2007) 1872.

    Article  CAS  Google Scholar 

  12. Leridon A, Nucl Eng Des 61 (1980) 143.

    Article  CAS  Google Scholar 

  13. Ammirabilea L, and Walker S P, Nucl Eng Des 268 (2014) 24.

    Article  Google Scholar 

  14. Mishra P, J Nucl Mater 429 (2012) 257.

    Article  CAS  Google Scholar 

  15. Garner F A, in Comprehensive Nuclear Materials (ed) Konings R, Elsevier (2012), p 33.

  16. Porollo S I, Dvoriashin A M, Konobeev Y V, and Ivanov A A, J Nucl Mater 359 (2006) 41.

    Article  CAS  Google Scholar 

  17. Sarkar R, Kumar R S, Raghu N, Chellapandi P, and Chetal S C, J Procedia Eng 55 (2013) 355.

    Article  CAS  Google Scholar 

  18. Sarkar R, Kumar R S, Jalaldeen S, Sharma A K, and Velusamy K, Int J Press Vessels Pip 160 (2018) 24.

    Article  Google Scholar 

  19. Jayakumar T, Mathew M D, Laha K, and Sandhya R, Nucl Eng Des 265 (2013) 1175.

    Article  CAS  Google Scholar 

  20. Fujiwara M, Uchida H, Ohta S, Yuhara S, Tani S, and Sato Y, in Radiation Induced Changes in Microstructure: 13th International Symposium (Part I) (ed) Garner F A, Packan N H, and Kumar A S. ASTM STP: 955, p 127.

  21. Vijayanand V D, Parameswaran P, Nandagopal M, Panneer Selvi S, Laha K, and Mathew M D, J Nucl Mater 438 (2013) 51.

    Article  CAS  Google Scholar 

  22. Vijayanand V D, Laha K, Parameswaran P, Nandagopal M, Panneer Selvi S, and Mathew M D, J Nucl Mater 453 (2014) 188.

    Article  CAS  Google Scholar 

  23. Mannan S L, Chetal S C, Raj B, and Bhoje S B, Trans Indian Inst Met 56 (2003) 155.

    CAS  Google Scholar 

  24. Campbell F C, Inspection of Metals—Understanding the Basics, Copyright 2013, ASM International, p 233.

  25. Acharya A K, Sharma A K, Avinash C S S S, Das S K, Gnanadhas L, Nashine B K, and Selvaraj P, Nucl Eng Technol 49 (2017) 1442.

    Article  CAS  Google Scholar 

  26. Samantaray D, Mandal S, Bhaduri A K, and Sivaprasad P V, Trans Indian Inst Met 63 (2010) 823.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shri. S.Raghupathy, Director RDTG, Shri. S. Jalaldeen and Dr. Shaju K Albert for their highly motivating discussions, and for the support from Mr. R. Manu, and Shr. K. Mohan of RDTG. We are also thankful to Mr. N. Raghu and Mr. Krishna Chaitanya, of QAD for the assistance rendered in radiography and Smt. Sreevidya of MMG for carrying out the Fractography tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosy Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R., Vijayanand, V.D., Acharya, A.K. et al. Experimental Investigation of the Evolution of Fuel Clad Ballooning Using Real-Time X-ray Imaging and Its Microstructural Studies. Trans Indian Inst Met 74, 1933–1942 (2021). https://doi.org/10.1007/s12666-021-02285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02285-8

Keywords

Navigation