Skip to main content
Log in

Role of influence-induced dynamic link weight adjustment in the cooperation of spatial prisoner’s dilemma game

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose a novel dynamic link weight adjustment model, in which link weights on static network will be dynamically adjusted according to agents’ influence during the evolutionary process. To be specific, when an agent’s strategy is learned by one of his direct neighbors, his influence will be expanded by one unit \(\beta \). Then link weights between agents will be adaptively adjusted by counting the influence of agents. Meanwhile, we utilize a variable \(\delta \) to control the range of link weights, that is, link weights can only be limited within the interval \([1-\delta ,1+\delta ]\). In our model, it should be noted that link weights between agents will be integrated into the fitness calculation process. Through abundant simulations, the results indicate that the newly proposed model can significantly foster the persistence and emergence of cooperation. In addition, when the cost-to-benefit ratio u is quite small, the level of cooperation will increase with the augmentation of \(\delta \). However, when the cost-to-benefit ratio u exceeds a certain value, the level of cooperation increases at the early stage and then decreases with the growth of \(\delta \). As for the potential reasons, we observe that it is closely related to the type of connections, in which the cooperation can flourish once \(C-C\) type links dominate the system, while other types will hamper the evolution of cooperation. Taking together, the current model and results will provide some insights into the collective cooperation within the human population.

Graphic abstract

We propose a novel dynamic link weight adjustment model, in which link weights on static network will be dynamically adjusted according to agents’ influence during the evolutionary process. In this figure, the color phase encodes the frequency of cooperation \(\rho \)C on \(\delta -\varDelta \) parameter plane for a series values of cost-to-benefit ratio u. Panels (a) to (f) are obtained at the cost-to-benefit ratio u=0.01, u=0.015, u=0.02, u=0.025, u=0.03, and u=0.035, respectively. It can be found that when u is quite small, the level of cooperation increases with the augmentation of \(\delta \), while the parameter \(\varDelta \) seems to have no significant impact on the evolution of cooperation. Similar with previous discussion, when the cost-to-benefit ratio u exceeds to a certain value, the level of cooperation presents the first increase and then decrease with the increase of \(\delta \). In addition, when the parameter \(\delta \) reaches a certain value, the level of cooperation decreases as \(\varDelta \) gradually grows. All these observations suggest that there is an optimal combination \(\delta -\varDelta \) promoting the evolution of cooperation. All results are obtained at L=100, MCS=\(3\times 10^4, \beta =1\) and K=0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no external data associated with the manuscript.]

References

  1. T. Cluttonbrock, Nature 462, 51 (2009)

    Article  ADS  Google Scholar 

  2. C. Darwin, Am. Anthropol. 61, 176 (1963)

    Google Scholar 

  3. G. Hardin, Science 162, 1243 (1968)

    Article  ADS  Google Scholar 

  4. J. Nash, Proc. Natl. Acad. Sci. USA 36, 48 (1950)

    Article  ADS  Google Scholar 

  5. M.A. Nowak, K. Sigmund, Nature 355, 250 (1992)

    Article  ADS  Google Scholar 

  6. T. Clutton-Brock, Nature 462, 51 (2009)

    Article  ADS  Google Scholar 

  7. R. Axelrod, W.D. Hamilton, Science 211, 1390 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.G. McNickle, R. Dybzinski, Ecol. Lett. 16, 545 (2013)

    Article  Google Scholar 

  9. G.M. Hodgson, K.N. Huang, J. Evolut. Econ. 22, 345 (2012)

    Article  Google Scholar 

  10. R. Kummerli, C. Colliard, N. Fiechter, B. Petitpierre, F. Russier, L. Keller, Proc. R. Soc. B 274, 2965 (2007)

    Article  Google Scholar 

  11. M. Perc, New J. Phys. 8, 22 (2006)

    Article  ADS  Google Scholar 

  12. F. Zhang, J. Wang, H.Y. Gao, X.P. Li, C.Y. Xia, Eur. Phys. J. B 94, 22 (2021)

    Article  ADS  Google Scholar 

  13. T. Lin, T. Alpcan, K. Hinton, IEEE Syst. J. 11, 649 (2017)

    Article  ADS  Google Scholar 

  14. X.Y. Li, T. Chen, Q. Chen, X.Y. Zhang, Eur. Phys. J. B 93, 204 (2020)

    Article  ADS  Google Scholar 

  15. J.M. Smith, G.R. Price, Nature 246, 15 (1973)

    Article  ADS  Google Scholar 

  16. M. Perc, O. Petek, S.M. Kamal, Appl. Math. Comput. 249, 19 (2014)

    MathSciNet  Google Scholar 

  17. S.S. Komorita, J. Exp. Psychol. 12, 357 (1976)

    Google Scholar 

  18. M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008)

    Article  ADS  Google Scholar 

  19. M. Perc, Z. Wang, PLoS One 5, e15117 (2010)

    Article  ADS  Google Scholar 

  20. A. Szolnoki, M. Perc, Z. Danku, Phys. A 387, 2075 (2008)

    Article  Google Scholar 

  21. Z. Wang, L. Wang, A. Szolnoki, Eur. Phys. J. B 88, 124 (2015)

    Article  ADS  Google Scholar 

  22. Q. Jian, X.P. Li, J. Wang, C.Y. Xia, Appl. Math. Comput. 396, 125928 (2021)

    MathSciNet  Google Scholar 

  23. M.A. Nowak, R.M. May, Nature 359, 826 (1992)

    Article  ADS  Google Scholar 

  24. X.H. Deng, Y. Liu, Z.G. Chen, Physca A 389, 5173 (2010)

    Article  ADS  Google Scholar 

  25. F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)

    Article  ADS  Google Scholar 

  26. X.K. Meng, S.W. Sun, X.X. Li, L. Wang, C.Y. Xia, J.Q. Sun, Phys. A 442, 388 (2016)

    Article  Google Scholar 

  27. J. Wang, W.W. Lu, L.N. Liu, L. Li, C.Y. Xia, PLoS One 11, e0167083 (2016)

    Article  Google Scholar 

  28. F. Fu, T. Wu, L. Wang, Phys. Rev. E 79, 036101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. X.P. Li, S.W. Sun, C.Y. Xia, Appl. Math. Comput. 361, 810 (2019)

    Article  MathSciNet  Google Scholar 

  30. Z.L. Xiao, X.J. Chen, New J. Phys. 22, 023012 (2020)

  31. W.J. Li, L.L. Jiang, M. Perc, Appl. Math. Comput. 391, 125705 (2021)

    MathSciNet  Google Scholar 

  32. A. Szolnoki, M. Perc, New J. Phys. 15, 053010 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. C.Y. Xia, X.P. Li, Z. Wang, M. Perc, New J. Phys. 20, 75005 (2018)

    Article  Google Scholar 

  34. W.X. Wang, J. Ren, G.R. Chen, B.H. Wang, Phys. Rev. E 74, 056113 (2006)

    Article  ADS  Google Scholar 

  35. W.W. Lu, J. Wang, C.Y. Xia, Phys. Lett. A 382, 3058 (2018)

    Article  ADS  Google Scholar 

  36. C.B. Sun, C. Luo, Appl. Math. Comput. 374, 125063 (2020)

    MathSciNet  Google Scholar 

  37. X.P. Li, H.B. Wang, G. Hao, C.Y. Xia, Phys. Lett. A 384, 126414 (2020)

    Article  MathSciNet  Google Scholar 

  38. K.K. Huang, X.P. Zheng, Z.J. Li, Y.Q. Yang, Sci. Rep. 5, 14783 (2015)

    Article  ADS  Google Scholar 

  39. C. Shen, C. Chu, L. Shi, M. Perc, Z. Wang, Roy. Soc. Open Sci. 5, 180199 (2018)

    Article  ADS  Google Scholar 

  40. C. Chu, J.Z. Liu, C. Shen, J.H. Jin, Y.X. Tang, L. Shi, Chaso Soliton Fractals 104, 28 (2017)

    Article  ADS  Google Scholar 

  41. H. Guo, C. Chu, C. Shen, L. Shi, Chaos Solitons Fractals 109, 265 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. C. Hauert, G. Szabó, Am. J. Phys. 73, 405 (2005)

    Article  ADS  Google Scholar 

  43. Z. Wang, M. Perc, Hashimoto Phys. Rev. E 82, 021115 (2010)

    Article  ADS  Google Scholar 

  44. Q. Su, A. McAvoy, L. Wang, N.A. Nowak, Hashimoto Proc. Natl Acad. Sci. USA 116, 25398 (2019)

    Article  Google Scholar 

  45. G. Szabó, C. Töke, Phys. Rev. E 652, 69 (1998)

    Article  ADS  Google Scholar 

  46. Y.T. Dong, G. Hao, J. Wang, C. Liu, C.Y. Xia, Phys. Lett. A 383, 1157 (2019)

    Article  ADS  Google Scholar 

  47. X.P. Li, H.B. Wang, C.Y. Xia, M. Perc, Front. Phys-Lausanne 7, 125 (2019)

    Article  ADS  Google Scholar 

  48. T. Wu, F. Fu, P.X. Dou, L. Wang, Phys. A 413, 86 (2014)

    Article  Google Scholar 

  49. M. Cardinot, J. Griffith, C. O’Riordan, Phys. A 493, 116 (2018)

    Article  MathSciNet  Google Scholar 

  50. A. Szolnoki, M. Perc, Eur. Phys. J. B 67, 337 (2009)

    Article  ADS  Google Scholar 

  51. J.Q. Li, J.W. Dang, J.L. Zhang, Appl. Math. Comput. 369, 124837 (2020)

    Article  MathSciNet  Google Scholar 

  52. T. Khoo, F. Fu, S. Pauls, Sci. Rep. 6, 36293 (2016)

    Article  ADS  Google Scholar 

  53. D.G. Rand, N.A. Christakis, Proc. Natl. Acad. Sci. USA 108, 19193 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is partially supported by the Project of National Defense Science and Technology Innovation under Grant no. DF20190050.

Author information

Authors and Affiliations

Authors

Contributions

CZ and XZ designed the model, analyzed the results and wrote the manuscript. All authors gave the final approval for publication.

Corresponding author

Correspondence to Chengli Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhang, X. Role of influence-induced dynamic link weight adjustment in the cooperation of spatial prisoner’s dilemma game. Eur. Phys. J. B 94, 112 (2021). https://doi.org/10.1140/epjb/s10051-021-00079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00079-x

Navigation