Skip to main content
Log in

Influence of Fiber Orientation and Fillers on Low Velocity Impact Response of the Fabric Reinforced Epoxy Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The low velocity impact response of the epoxy composite materials, which were reinforced with various hybrid contents, such as plain pure or hybrid fabrics (carbon, aramid and glass fibers and copper wires) and filler mixtures into the epoxy matrix (aramid powder, potatoes starch, barium ferrite and carbon black) was investigated using a drop weight impact machine. The aim of this study was to characterize and assess the effects of fiber orientation at various angles and filler mixtures into epoxy matrix on the impact response. All the tests were carried out at constant impact energy, namely 90.629 J. Results indicated that the fiber orientation at various angles has a positive effect on impact response, mainly in the case of aramid fabric reinforced composites. In terms of influence of fillers addition into matrix, it was obtained an improvement on the impact response of hybrid fabric reinforced composite as compared to the pure fabric reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data analyzed during this study are included in this published article.

References

  1. Khashaba, U.A., Othman, R.: Low-velocity impact of woven CFRE composites under different temperature levels. Int. J. Impact Eng 108, 191–204 (2017). https://doi.org/10.1016/j.ijimpeng.2017.04.023

    Article  Google Scholar 

  2. Nassr, A.A., Yagi, T., Maruyama, T., Hayashi, G.: Damage and wave propagation characteristics in thin GFRP panels subjected to impact by steel balls at relatively low-velocities. Int. J. Impact Eng 111, 21–33 (2018). https://doi.org/10.1016/j.ijimpeng.2017.08.007

    Article  Google Scholar 

  3. Birsan, I.G., Circiumaru, A., Bria, V., Roman, I., Ungureanu, V.: Mechanical characterization of fiber fabrics. Proceedings of the ASME 10th Biennial Conference on Engineering Systems Design and Analysis. 1, 671–674 (2010)

  4. Circiumaru, A., Bria, V., Birsan, I.G., Andrei, G., Dima, D.: Some properties of stratified composites. Proceedings of the ASME 10th Biennial Conference on Engineering Systems Design and Analysis. 679–682 (2010)

  5. Körbelin, J., Derra, M., Fiedler, B.: Influence of temperature and impact energy on low velocity impact damage severity in CFRP. Compos. A Appl. Sci. Manuf. 115, 76–87 (2018). https://doi.org/10.1016/j.compositesa.2018.09.010

    Article  CAS  Google Scholar 

  6. Artero-Guerrero, J.A., Pernas-Sánchez, J., López-Puente, J., Varas, D.: Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates. Compos. Struct. 133, 774–781 (2015). https://doi.org/10.1016/j.compstruct.2015.08.027

    Article  Google Scholar 

  7. Salvetti, M., Sbarufatti, C., Gilioli, A., Dziendzikowski, M., Dragan, K., Manes, A., Giglio, M.: On the mechanical response of CFRP composite with embedded optical fibre when subjected to low velocity impact and CAI tests. Compos. Struct. 179, 21–34 (2017). https://doi.org/10.1016/j.compstruct.2017.07.063

    Article  Google Scholar 

  8. Krollmann, J., Schreyer, T., Veidt, M., Drechsler, K.: Impact and post-impact properties of hybrid-matrix laminates based on carbon fiber-reinforced epoxy and elastomer subjected to low-velocity impacts. Compos. Struct. 208, 535–545 (2019). https://doi.org/10.1016/j.compstruct.2018.09.087

    Article  Google Scholar 

  9. Tuo, H., Lu, Z., Ma, X., Xing, J., Zhang, C.: Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions. Compos. B Eng. 163, 642–654 (2019). https://doi.org/10.1016/j.compositesb.2019.01.006

    Article  CAS  Google Scholar 

  10. Singh, H., Namala, K.K., Mahajan, P.: A damage evolution study of E-glass/epoxy composite under low velocity impact. Compos. B Eng. 76, 235–248 (2015). https://doi.org/10.1016/j.compositesb.2015.02.016

    Article  CAS  Google Scholar 

  11. Patel, S., Guedes Soares, C.: Reliability assessment of glass epoxy composite plates due to low velocity impact. Compos. Struct. 200, 659–668 (2018). https://doi.org/10.1016/j.compstruct.2018.05.131

    Article  Google Scholar 

  12. Yang, L., Yan, Y., Kuang, N.: Experimental and numerical investigation of aramid fibre reinforced laminates subjected to low velocity impact. Polym. Testing 32, 1163–1173 (2013). https://doi.org/10.1016/j.polymertesting.2013.07.010

    Article  CAS  Google Scholar 

  13. Ansari, Md.M., Chakrabarti, A.: Impact behavior of FRP composite plate under low to hyper velocity impact. Compos. B Eng. 95, 462–474 (2016). https://doi.org/10.1016/j.compositesb.2016.04.021

    Article  CAS  Google Scholar 

  14. Polymer Composites Reinforced with Hybrid Fiber Fabrics: Felipe, R.C.T. dos S., Felipe, R.N.B., Batista, A.C. de M.C., Aquino, E.M.F. Mater. Res. 20, 555–567 (2017). https://doi.org/10.1590/1980-5373-mr-2016-0587

    Article  CAS  Google Scholar 

  15. Sevkat, E., Liaw, B., Delale, F.: Drop-weight impact response of hybrid composites impacted by impactor of various geometries. Mater. Des. 1980–2015(52), 67–77 (2013). https://doi.org/10.1016/j.matdes.2013.05.016

    Article  CAS  Google Scholar 

  16. Arun Prakash, V.R., Julyes Jaisingh, S.: Mechanical strength behaviour of silane treated E-glass fibre, Al-6061 and SS-304 wire mesh reinforced epoxy resin Hybrid composites. Defence Technology. 10, 2279–2286 (2018). https://doi.org/10.1016/j.dt.2018.01.006

    Article  Google Scholar 

  17. Wan, Y., Diao, C., Yang, B., Zhang, L., Chen, S.: GF/epoxy laminates embedded with wire nets: A way to improve the low-velocity impact resistance and energy absorption ability. Compos. Struct. 202, 818–835 (2018). https://doi.org/10.1016/j.compstruct.2018.04.041

    Article  Google Scholar 

  18. Sun, M., Wang, Z., Yang, B., Sun, X.: Experimental investigation of GF/epoxy laminates with different SMAs positions subjected to low-velocity impact. Compos. Struct. 171, 170–184 (2017). https://doi.org/10.1016/j.compstruct.2017.02.094

    Article  Google Scholar 

  19. Li, H., Liu, J., Wang, Z., Yu, Z., Liu, Y., Sun, M.: The Low Velocity Impact Response of Shape Memory Alloy Hybrid Polymer Composites. Polymers 10, 1026 (2018). https://doi.org/10.3390/polym10091026

    Article  CAS  Google Scholar 

  20. Gürgen, S.: An investigation on composite laminates including shear thickening fluid under stab condition. J. Compos. Mater. 53, 1111–1122 (2019). https://doi.org/10.1177/0021998318796158

    Article  Google Scholar 

  21. Gürgen, S., Kuşhan, M.C.: The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos. A Appl. Sci. Manuf. 94, 50–60 (2017). https://doi.org/10.1016/j.compositesa.2016.12.019

    Article  CAS  Google Scholar 

  22. Gürgen, S., Fernandes, F.A.O., de Sousa, R.J.A., Kuşhan, M.C.: Development of Eco-friendly Shock-absorbing Cork Composites Enhanced by a Non-Newtonian Fluid. Appl. Compos. Mater. 28, 165–179 (2021). https://doi.org/10.1007/s10443-020-09859-7

    Article  Google Scholar 

  23. Gürgen, S., Yıldız, T.: Stab resistance of smart polymer coated textiles reinforced with particle additives. Compos. Struct. 235, 111812 (2020). https://doi.org/10.1016/j.compstruct.2019.111812

    Article  Google Scholar 

  24. Gürgen, S.: Low-velocity impact performance of UHMWPE composites consolidated with carbide particles. Arch. Civ. Mech. Eng. 20 (2020). https://doi.org/10.1007/s43452-020-00042-0

  25. Gürgen, S., Kuşhan, M.C.: The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech. Adv. Mater. Struct. 24, 1381–1390 (2017). https://doi.org/10.1080/15376494.2016.1231355

    Article  CAS  Google Scholar 

  26. Long, S., Yao, X., Zhang, X.: Delamination prediction in composite laminates under low-velocity impact. Compos. Struct. 132, 290–298 (2015). https://doi.org/10.1016/j.compstruct.2015.05.037

    Article  Google Scholar 

  27. Yang, L., Wu, Z., Gao, D., Liu, X.: Microscopic damage mechanisms of fibre reinforced composite laminates subjected to low velocity impact. Comput. Mater. Sci. 111, 148–156 (2016). https://doi.org/10.1016/j.commatsci.2015.09.039

    Article  Google Scholar 

  28. Thorsson, S.I., Sringeri, S.P., Waas, A.M., Justusson, B.P., Rassaian, M.: Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact. Compos. Struct. 186, 335–346 (2018). https://doi.org/10.1016/j.compstruct.2017.11.084

    Article  Google Scholar 

  29. Sun, X.C., Kawashita, L.F., Kaddour, A.S., Hiley, M.J., Hallett, S.R.: Comparison of low velocity impact modelling techniques for thermoplastic and thermoset polymer composites. Compos. Struct. 203, 659–671 (2018). https://doi.org/10.1016/j.compstruct.2018.07.054

    Article  Google Scholar 

  30. Caminero, M.A., García-Moreno, I., Rodríguez, G.P.: Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: Effects of laminate thickness and ply-stacking sequence. Polym. Testing 63, 530–541 (2017). https://doi.org/10.1016/j.polymertesting.2017.09.016

    Article  CAS  Google Scholar 

  31. Bae, J.-H., Lee, S.-W., Chang, S.-H.: Characterization of low-velocity impact-induced damages in carbon/epoxy composite laminates using a poly(vinylidene fluoride–trifluoroethylene) film sensor. Compos. B Eng. 135, 189–200 (2018). https://doi.org/10.1016/j.compositesb.2017.10.008

    Article  CAS  Google Scholar 

  32. Birsan, I.G., Bria, V., Bunea, M., Circiumaru, A.: An Experimental Investigation of Thermal Properties of Fabric Reinforced Epoxy Composites. Materiale Plastice. 57, 159–168 (2019). https://doi.org/10.37358/MP.20.2.5362

  33. Bunea, M., Circiumaru, A., Birsan, I.G.: Electrical conductivity of fabric reinforced filled epoxy plates. The Scientific Journal of Cahul State University “Bogdan Petriceicu Hasdeu” Economic and Engineering Studies. 3, 73–79 (2018)

  34. Bunea, M., Bria, V., Circiumaru, A., Birsan, I.G.: The Unusual Electomagnetic Proprieties of Fabric Reinforced Epoxy Composites. The Annals of „Dunarea de Jos” University of Galati, Fascicle IX, Metallurgy and Materials Science. 90–94 (2015)

  35. Bunea, M., Bria, V., Cîrciumaru, A., Bîrsan, I.G.: The Unusual Electromagnetic Proprieties of Fabric Reinforced Epoxy Composites. MMS. 38, (2015)

  36. Bunea, M., Cîrciumaru, A., Buciumeanu, M., Bîrsan, I.G., Silva, F.S.: Low velocity impact response of fabric reinforced hybrid composites with stratified filled epoxy matrix. Compos. Sci. Technol. 169, 242–248 (2019). https://doi.org/10.1016/j.compscitech.2018.11.024

    Article  CAS  Google Scholar 

  37. European Standard EN ISO 6603–1:2000: Determination of puncture impact behaviour of rigid plastics. Part 1: Non-instrumented impact testing. (2000)

  38. European Standard EN ISO 6603–2:2000: Determination of puncture impact behaviour of rigid plastics. Part 2: Instrumented impact testing. (2000)

  39. Icten, B.M., Atas, C., Aktas, M., Karakuzu, R.: Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates. Compos. Struct. 91, 318–323 (2009). https://doi.org/10.1016/j.compstruct.2009.05.010

    Article  Google Scholar 

  40. Hosur, M.V., Adbullah, M., Jeelani, S.: Studies on the low-velocity impact response of woven hybrid composites. Compos. Struct. 67, 253–262 (2005). https://doi.org/10.1016/j.compstruct.2004.07.024

    Article  Google Scholar 

  41. Gürgen, S., Kuşhan, M.C.: The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Testing 64, 296–306 (2017). https://doi.org/10.1016/j.polymertesting.2017.11.003

    Article  CAS  Google Scholar 

  42. da Cunha, R.D., da Cunha, R.A.D., de Amorim Junior, W.F., Freire Júnior, R.C.S.: Study of the Resistance Variation in Intraply/Yarn Kevlar/Glass Composite after Low-Velocity Impact. J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-05015-1

  43. Uzay, Ç., Acer, D., Geren, N.: Impact Strength of Interply and Intraply Hybrid Laminates Based on Carbon-Aramid/Epoxy Composites. Euro. Mech. Sci. 3, 1–5 (2019). https://doi.org/10.26701/ems.384440

Download references

Acknowledgment

This work was supported by the project UID/EEA/04436/2019, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941 and the project with reference NORTE-01-0145-FEDER-000018-HAMaBICo.

Also, this work has been funded by the European Social Fund through the Sectoral Operational Programme Human Capital 2014-2020, through the Financial Agreement with the title in English: "Scholarships for entrepreneurial education among doctoral students and postdoctoral researchers (Be Entrepreneur!)", Contract no. 51680/09.07.2019—SMIS code: 124539.

This work was also supported by the Project "EXPERT", Contract no. 14PFE/17.10.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bunea.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunea, M., Bria, V., Silva, F.S. et al. Influence of Fiber Orientation and Fillers on Low Velocity Impact Response of the Fabric Reinforced Epoxy Composites. Appl Compos Mater 28, 1277–1290 (2021). https://doi.org/10.1007/s10443-021-09910-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09910-1

Keywords

Navigation