Skip to main content
Log in

An explicit expression for all distinct self-dual cyclic codes of length \(p^k\) over Galois ring \(\mathrm{GR}(p^2,m)\)

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let p be any odd prime number and let mk be arbitrary positive integers. The construction for self-dual cyclic codes of length \(p^k\) over the Galois ring \(\mathrm{GR}(p^2,m)\) is the key to construct self-dual cyclic codes of length \(p^kn\) over the integer residue class ring \({\mathbb {Z}}_{p^2}\) for any positive integer n satisfying \(\mathrm{gcd}(p,n)=1\). So far, existing literature has only determined the number of these self-dual cyclic codes (Des Codes Cryptogr 63:105–112, 2012). In this paper, we give an efficient construction for all distinct self-dual cyclic codes of length \(p^k\) over \(\mathrm{GR}(p^2,m)\) by using column vectors of Kronecker products of matrices with specific types. On this basis, we further obtain an explicit expression for all these self-dual cyclic codes by using binomial coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blackford, T.: Cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Discrete Appl. Math. 128, 27–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, Y., Cao, Y., Li, Q.: The concatenated structure of cyclic codes over \({\mathbb{Z}}_{p^2}\). J. Appl. Math. Comput. 52, 363–385 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, Y., Cao, Y., Ling, S., Wang, G.: An explicit expression for Euclidean self-dual cyclic codes of length \(2^k\) over Galois ring \({\rm GR}(4, m)\). Finite Fields Appl. 72, 101817 (2021)

    Article  MATH  Google Scholar 

  4. Cao, Y., Cao, Y., Dinh, H.Q., Wang, G., Sirisrisakulchai, J.: An explicit expression for Euclidean self-dual cyclic codes over \({\mathbb{F}}_{2^m}+u{\mathbb{F}}_{2^m}\) of length \(2^s\). Discrete Math. 344, 112323 (2021)

    Article  MATH  Google Scholar 

  5. Cao, Y., Cao, Y., Dinh, H.Q., Jitman, S.: An efficient method for constructing self-dual cyclic codes of length \(p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Discrete Math. 343, 111868 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dougherty, S.T., Park, Y.H.: On modular cyclic codes. Finite Fields Appl. 13, 31–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({ Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jitman, S., Ling, S., Sangwisut, E.: On self-dual cyclic codes of length \(p^a\) over \({\rm GR}(p^2, s)\). Adv. Math. Commun. 10, 255–273 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kiah, H.M., Leung, K.H., Ling, S.: Cyclic codes over \({\rm GR}(p^2, m)\) of length \(p^k\). Finite Fields Appl. 14, 834–846 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiah, H.M., Leung, K.H., Ling, S.: A note on cyclic codes over \({\rm GR}(p^2, m)\) of length \(p^k\). Des. Codes Cryptogr. 63, 105–112 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, B., Lee, Y.: Lee weights of cyclic self-dual codes over Galois rings of characteristic \(p^2\). Finite Fields Appl. 45, 107–130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, B., Lee, Y.: http://www.math.ewha.ac.kr/~yoonjinl/Galoisrings.pdf

  13. Liu, H., Maouche, Y.: Some repeated-root constacyclic codes over Galois rings. IEEE Trans. Inform. Theory 63(10), 6247–6255 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shi, M., Huang, D., Sok, L., Solé, P.: Double circulant self-dual and LCD codes over Galois rings. Adv. Math. Commun. 13, 171–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sobhani, R., Esmaeili, M.: A note on cyclic codes over \({\rm GR}(p^2, m)\) of length \(p^k\). Finite Fields Appl. 15, 387–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wan, Z.-X.: Lectures on finite fields and Galois rings. World Scientific Publishing Co Inc. (2003)http://math.ewha.ac.kr/~yoonjinl/Galoisrings.pdf

Download references

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China (Grant Nos. 12071264, 11801324, 11671235, 61971243), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BA007), the Scientific Research Fund of Hubei Provincial Key Laboratory of Applied Mathematics (Hubei University) (Grant Nos. HBAM201906), and the Nankai Zhide Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglin Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The construction of self-dual codes in Example 1

Appendix: The construction of self-dual codes in Example 1

In this appendix, we illustrate how to construct all distinct self-dual cyclic codes length \(3^3\) over \(\mathrm{GR}(3^2,m)\) by use of Theorem 2. First, we have

$$\begin{aligned}&G_3=\left( \begin{array}{ccc} 1 &{} 0 &{} 0\\ -1 &{} -1 &{} 0 \\ 1 &{} -1 &{} 1\end{array}\right) , \quad G_3-I_3=\left( \begin{array}{ccc} 0 &{} 0 &{} 0\\ -1 &{} \mathbf{1} &{} 0 \\ 1 &{} \mathbf{2} &{} 0\end{array}\right) ,\quad G_9=\left( \begin{array}{ccc} G_3 &{} 0 &{} 0\\ -G_3 &{} -G_3 &{} 0 \\ G_3 &{} -G_3 &{} G_3\end{array}\right) ;\\&G_9-I_9 = \left( \begin{array}{ccc} G_3-I_3 &{} 0 &{} 0\\ -G_3 &{} -G_3-I_3 &{} 0 \\ G_3 &{} -G_3 &{} G_3-I_3\end{array}\right) =\left( \begin{array}{ccc|ccc|ccc} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ -1 &{} \mathbf{1} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ \hline -1 &{} 0 &{} 0 &{} \mathbf{1} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ -1 &{} 1 &{} -1 &{} 2 &{} 1 &{} \mathbf{1} &{} 0 &{} 0 &{} 0 \\ \hline 1 &{} 0 &{} 0 &{} 2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ -1 &{} -1 &{} 0 &{} 1 &{} 1 &{} 0 &{} -1 &{} \mathbf{1} &{} 0 \\ 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} 2 &{} 1 &{} 2 &{} 0\end{array}\right) ;\\&G_{27} = \left( \begin{array}{ccc} G_9 &{} 0 &{} 0\\ -G_9 &{} -G_9 &{} 0 \\ G_9 &{} -G_9 &{} G_9\end{array}\right) \quad \hbox {and}\quad G_{18}-I_{18}=\left( \begin{array}{cc} G_9-I_9 &{} 0 \\ -G_9 &{} -G_9-I_9 \end{array}\right) , \end{aligned}$$

where \(-1=2\) and \(-2=1\) (mod 3). Then by \(2^{-1}=2\) (mod 3), we have the following conclusions:

\(\bullet \) The codes is Case II of Example 1 are constructed as follows:

  • \(3^m\) codes: \(\langle (u-1)^{25}+3b(u),3(u-1)^2\rangle \), where

    • \(\bullet \) \(b(u)=2(u-1)^7+b^{[1,3)}(u)\),

    • \(\bullet \) \(b^{[1,3)}(u)=b_1+b_2(u-1)\), where \(\left( \begin{array}{c}b_1 \\ b_2 \end{array}\right) =a_2\xi _2^{[1,3)} =a_2\left( \begin{array}{c}{} \mathbf{1} \\ 2 \end{array}\right) =\left( \begin{array}{c}a_2 \\ 2a_2 \end{array}\right) \) and \(a_2\in {\mathbb {F}}_{3^m}\) arbitrary.

  • \((3^m)^2\) codes: \(\langle (u-1)^{23}+3b(u),3(u-1)^4\rangle \), where

    • \(\bullet \) \(b(u)=2(u-1)^5+b^{[3,7)}(u)\),

    • \(\bullet \) \(b^{[3,7)}(u)=b_3+b_4(u-1)+b_5(u-1)^2+b_6(u-1)^3\), where \(\left( \begin{array}{c}b_3 \\ b_4 \\ b_5 \\ b_6\end{array}\right) =a_4\xi _4^{[3,7)}+a_6\xi _6^{[3,7)} =a_4\left( \begin{array}{c}{} \mathbf{1} \\ 1 \\ 2 \\ 2\end{array}\right) +a_6\left( \begin{array}{c}0 \\ 0 \\ \mathbf{1} \\ 0\end{array}\right) =\left( \begin{array}{c} a_4\\ a_4\\ 2a_4+a_6\\ 2a_4 \end{array}\right) \) and \(a_4,a_6\in {\mathbb {F}}_{3^m}\) arbitrary.

  • \((3^m)^3\) codes: \(\langle (u-1)^{21}+3b(u),3(u-1)^6\rangle \), where

    • \(\bullet \) \(b(u)=2(u-1)^3+b^{[5,11)}(u)\),

    • \(\bullet \) \(b^{[5,11)}(u)=\sum _{j=5}^{10}b_j(u-1)^{j-5}\), where

      $$\begin{aligned} \left( \begin{array}{c} b_5 \\ b_6 \\ b_7 \\ b_8 \\ b_9 \\ b_{10}\end{array}\right)= & {} a_6\xi _6^{[5,11)}+a_8\xi _8^{[5,11)}+a_{10}\xi _{10}^{[5,11)} = \left( \begin{array}{c|c|c} \mathbf{1} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0\\ 0 &{} \mathbf{1} &{} 0\\ 2 &{} 2 &{} 0 \\ 0 &{} 0 &{} \mathbf{1} \\ 0 &{} 0 &{} 1\end{array}\right) \left( \begin{array}{c} a_6 \\ a_8 \\ a_{10}\end{array}\right) \\= & {} (a_6, 0, a_8, 2a_6+2a_8, a_{10}, a_{10})^{\mathrm{tr}} \end{aligned}$$

      and \(a_6,a_8,a_{10}\in {\mathbb {F}}_{3^m}\) arbitrary.

  • \((3^m)^4\) codes: \(\langle (u-1)^{19}+3b(u),3(u-1)^8\rangle \), where

    • \(\bullet \) \(b(u)=2(u-1)+b^{[7,15)}(u)\),

    • \(\bullet \) \(b^{[7,15)}(u)=\sum _{j=7}^{14}b_j(u-1)^{j-7}\), where

      $$\begin{aligned}&(b_7,b_8,b_9,b_{10},b_{11},b_{12},b_{13},b_{14})^{\mathrm{tr}} \\= & {} \left( \xi _8^{[7,15)},\xi _{10}^{[7,15)},\xi _{12}^{[7,15)},\xi _{14}^{[7,15)}\right) \left( \begin{array}{c} a_8 \\ a_{10} \\ a_{12}\\ a_{14}\end{array}\right) =\left( \begin{array}{c|c|c|c} \mathbf{1} &{} 0&{} 0&{} 0\\ 2 &{} 0 &{} 0 &{} 0 \\ 0 &{} \mathbf{1} &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 2 &{} \mathbf{1} &{} 0\\ 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 2 &{} 0 &{} \mathbf{1} \\ 0 &{} 1 &{} 1 &{} 2\end{array}\right) \left( \begin{array}{c} a_8 \\ a_{10} \\ a_{12}\\ a_{14}\end{array}\right) \\= & {} (a_8, 2a_8, a_{10}, a_{10}, 2a_{10}+a_{12}, a_{10}, 2a_{10}+a_{14}, a_{10}+a_{12}+2a_{14})^{\mathrm{tr}} \end{aligned}$$

      and \(a_8,a_{10},a_{12},a_{14}\in {\mathbb {F}}_{3^m}\) arbitrary.

\(\bullet \) The codes is Case III of Example 1 are constructed as follows:

  • \(3^m\) codes: \(\langle (u-1)^{24}+3b(u),3(u-1)^3\rangle \), where

    • \(\bullet \) \(b(u)=2(u-1)^6+b^{[3,5)}(u)\),

    • \(\bullet \) \(b^{[3,5)}(u)=b_3(u-1)+b_4(u-1)^2\), where \(\left( \begin{array}{c}b_3 \\ b_4 \end{array}\right) =a_4\xi _4^{[3,5)} =a_4\left( \begin{array}{c}{} \mathbf{1} \\ 1 \end{array}\right) =\left( \begin{array}{c}a_4 \\ a_4 \end{array}\right) \) and \(a_4\in {\mathbb {F}}_{3^m}\) arbitrary.

  • \((3^m)^2\) codes: \(\langle (u-1)^{22}+3b(u),3(u-1)^5\rangle \), where

    • \(\bullet \) \(b(u)=2(u-1)^4+b^{[5,9)}(u)\),

    • \(\bullet \) \(b^{[5,9)}(u)=b_5(u-1)+b_6(u-1)^2+b_7(u-1)^3+b_8(u-1)^4\), where \(\left( \begin{array}{c}b_5 \\ b_6 \\ b_7 \\ b_8\end{array}\right) = a_6\xi _6^{[5,9)}+a_8\xi _6^{[5,9)} =a_6\left( \begin{array}{c}{} \mathbf{1} \\ 0 \\ 0 \\ 2\end{array}\right) +a_8\left( \begin{array}{c}0 \\ 0 \\ \mathbf{1} \\ 2\end{array}\right) =\left( \begin{array}{c}a_6\\ 0\\ a_8\\ 2a_6+2a_8\end{array}\right) \) and \(a_6,a_8\in {\mathbb {F}}_{3^m}\) arbitrary.

  • \((3^m)^3\) codes: \(\langle (u-1)^{20}+3b(u),3(u-1)^7\rangle \), where

    • \(\bullet \) \(b(u)=2(u-1)^2+b^{[7,13)}(u)\),

    • \(\bullet \) \(b^{[7,13)}(u)=\sum _{j=7}^{12}b_j(u-1)^{j-6}\), where \(\left( \begin{array}{c} b_7 \\ b_8 \\ b_9 \\ b_{10} \\ b_{11} \\ b_{12}\end{array}\right) = a_8\xi _8^{[7,13)}+a_{10}\xi _{10}^{[7,13)}+a_{12}\xi _{12}^{[7,13)} = \left( \begin{array}{c|c|c} \mathbf{1} &{} 0 &{} 0 \\ 2 &{} 0 &{} 0 \\ 0 &{} \mathbf{1} &{} 0 \\ 0 &{} 1 &{} 0\\ 0 &{} 2 &{} \mathbf{1} \\ 0 &{} 1 &{} 0\end{array}\right) \left( \begin{array}{c} a_8 \\ a_{10} \\ a_{12}\end{array}\right) \) \(=(a_8, 2a_{8}, a_{10}, a_{10}, 2a_{10}+a_{12}, a_{10})^{\mathrm{tr}}\) and \(a_8,a_{10},a_{12}\in {\mathbb {F}}_{3^m}\) arbitrary.

  • \((3^m)^4\) codes: \(\langle (u-1)^{18}+3b(u),3(u-1)^9\rangle \), where

    • \(\bullet \) \(b(u)=2+b^{[9,17)}(u)\),

    • \(\bullet \) \(b^{[9,17)}(u)=\sum _{j=9}^{16}b_j(u-1)^{j-8}\), where

      $$\begin{aligned}&(b_9,b_{10},b_{11},b_{12},b_{13},b_{14},b_{15},b_{16})^{\mathrm{tr}} \\= & {} a_{10}\xi _{10}^{[9,17)}+a_{12}\xi _{12}^{[9,17)}+a_{14}\xi _{14}^{[9,17)}+a_{16}\xi _{16}^{[9,17)} \\= & {} \left( \begin{array}{c|c|c|c} \mathbf{1} &{} 0 &{} 0 &{} 0\\ 1 &{} 0 &{} 0 &{} 0 \\ 2 &{} \mathbf{1} &{} 0 &{} 0\\ 1 &{} 0 &{} 0 &{} 0 \\ 2 &{} 0 &{} \mathbf{1} &{} 0 \\ 1 &{} 1 &{} 2 &{} 0 \\ 2 &{} 0 &{} 0 &{} \mathbf{1} \\ 1 &{} 0 &{} 2 &{} 1\end{array}\right) \left( \begin{array}{c} a_{10} \\ a_{12} \\ a_{14}\\ a_{16}\end{array}\right) =\left( \begin{array}{c} a_{10} \\ a_{10} \\ 2a_{10}+a_{12} \\ a_{10} \\ 2a_{10}+a_{14} \\ a_{10}+a_{12}+2a_{14} \\ 2a_{10}+a_{16} \\ a_{10}+2a_{14}+a_{16}\end{array}\right) \end{aligned}$$

      and \(a_{10},a_{12},a_{14},a_{16}\in {\mathbb {F}}_{3^m}\) arbitrary.

Remark

One can also use Theorem 3 to get the above results, by calculating binomial coefficients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Cao, Y., Fu, FW. et al. An explicit expression for all distinct self-dual cyclic codes of length \(p^k\) over Galois ring \(\mathrm{GR}(p^2,m)\). AAECC 34, 489–520 (2023). https://doi.org/10.1007/s00200-021-00507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-021-00507-6

Keywords

Mathematics Subject Classification

Navigation