Skip to main content
Log in

Assessment of Grain Size and Grain Refinement Efficiency by Calculation of Released Heat Attributed to Formation of Primary Aluminum Crystals During Solidification of Al7Si4Cu Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Assessing heat released only related to the formation of primary crystals provides results with a significantly higher sensitivity than a traditional assessment of undercooling value. In this work, two similar Ti5B1 master alloys (commercial and refined) are used for grain refinement of Al7Si4Cu aluminum alloy to assess narrow differences in heat release during primary crystallization. The heat released related to primary crystallization is 2.50 ± 0.03, 3.16 ± 0.12, and 7.92 kJ kg−1 for samples treated with the refined master alloys, commercial master alloys, and sample solidified without grain refinement, respectively. The acquired results showed that the suggested method is more efficient in comparison with traditional metallographic or undercooling methods for the assessment of grain refining efficiency with the potential to extend the suggested approach on a wide range of metallic structures where solidification occurs by eutectic-type primary crystallization characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T:

Temperature

TLiq :

Liquidus temperature

TαAl Min :

The lowest temperature during primary crystallization

TαAl Rec :

Recalescence temperature

TαAl Start (TLiq):

Formation of the first nucleation sites

TαAl End :

Finalization of primary Al crystals formation and growth

ΔHα -Al :

Heat released from the solidified primary Al crystals

ΔTαAl Undercooling (Tα RecTα Min):

Primary undercooling

LαAl :

Latent heat for primary Al crystals formation

Cp :

Specific heat

t:

Time

tαAl Rec :

Recalescence time (TαAlMin–)

tTotal :

Primary crystals formation time (TαAlStart–TαAlEnd)

tLiq :

Time at primary solidification begins

tαAl End :

Time at primary solidification ends

\({\left(\frac{dT}{dt}\right)}_{CC}\) :

Mathematical expression of cooling curve’s first derivative

\({\left(\frac{dT}{dt}\right)}_{NC}\) :

Mathematical expression of the cooling curve’s first derivative without phase transformation

CLN:

Refined master alloy

WCM:

Commercial master alloy

NC:

Newtonian base line

CC:

Cooling curve

References

  1. Campbell J, Complete Casting Handbook, Metal Casting Processes, Techniques and Design, Elsevier Ltd., Butterworth-Heinemann (2011), 187–390. https://doi.org/10.1016/C2011-0-04123-6

  2. Lazaridis A A, Int. J. Heat Mass Transfer 13 (1970) 1459.

    Article  Google Scholar 

  3. Horr A M, Computational Evolving Technique for Casting Process of Alloys, Mathematical Problems in Engineering, Article ID 6164092, 2019; https://doi.org/10.1155/2019/6164092

  4. Fadl M, and Eames P C, Applied Thermal Engineering 151 (2019) 90.

    Article  CAS  Google Scholar 

  5. Palacz M, Melka B, Wecki B, Siwiec G, Przylucki R, Bulinski P, Golak S, Blacha L, and Smolka J, Metals and Materials International 26 (2020) 695.

    Article  CAS  Google Scholar 

  6. Kathait D S, International Research Journal of Engineering and Technology. 03 (2016) 1627.

    Google Scholar 

  7. Ostrogorsky A G, and Glicksman M E, Segregation and Component Distribution. Handbook of Crystal Growth: Bulk Crystal Growth. 2nd ed. Elsevier; Butterworth-Heinemann (2015).

  8. Zürner T, Schindler F, Vogt T, Eckert S, and Schumacher J, Journal of Fluid Mechanics 876 (2019) 1108.

    Article  Google Scholar 

  9. Oh J, Ortiz de Zárate J M, Sengers J V, and Ahlers G, Physical Review. E69 (2004) 021106.

  10. Chaung Y K, and Schwerdfeger K, Arch. Eisenhüttenwes 44 (1973) 341.

    Article  Google Scholar 

  11. Gulliver G H, J. Inst. Met. 9 (1909) 120.

    Google Scholar 

  12. Scheil E, Ztsch. Metallkunde 34 (1942) 70.

    Google Scholar 

  13. Won Y M, and Thomas B G, Metall. Mate. Trans. A. 32A (2001) 1755.

    Article  CAS  Google Scholar 

  14. Brody H D, and Flemings M C, Trans. Met. Soc. AIME. 236 (1966) 615.

    CAS  Google Scholar 

  15. Lacaze J, and Lesoult G R J, Materials Science and Engineering: A 173 (1993) 119.

    Article  Google Scholar 

  16. Faden M, König-Haagen A, and Brüggemann D, Energies 12 (2019) 868.

    Article  CAS  Google Scholar 

  17. Fujimura T, Takeshita K, and Suzuki R O, International Journal of Heat and Mass Transfer 130 (2019) 797.

    Article  CAS  Google Scholar 

  18. Kotadia H R, Qian M, and Das A, Trans Indian Inst Met 71 (2018) 2681.

    Article  CAS  Google Scholar 

  19. Ren-Guo G, and Di T, Acta Metallurgica Sinica(English Letters) 30 (2017); (5) 409.

  20. Czerwinski F, Metallurgical and Materials Transactions B 48 (2017) 367.

    Article  CAS  Google Scholar 

  21. ASTM Volume 03.01 Metals – Mechanical Testing; Elevated and Low-Temperature Tests; Metallography (2020) ISBN 978–1–6822–1519–7

  22. Standard Test Procedure for aluminium alloy grainrefiners: TP-1 Washington DC, USA, The Aluminum Association; (1990).

    Google Scholar 

  23. Nampoothiri J, Raj B and Ravi K R, Trans Indian Inst Met 68 (2015) 1101.

  24. Böttger B, Carré A, and Eiken J. et al., Trans Indian Inst Met 62 (2009) 299.

  25. Fardi-Ilkhchy A, Binesh B, and Shaban Ghazan, M, Trans Indian Inst Met 72 (2019) 2319.

  26. Chen Y, Feng Y, and Wang L et al., Trans Indian Inst Met 72 (2019) 533.

  27. Quested T E, Materials Science and Technology 20 (2004) 1357.

    Article  CAS  Google Scholar 

  28. Jiang B, Qiu D, Zhang M X, Ding P D, and Gao L, Journal of Alloys and Compounds 492 (2010) 95.

    Article  CAS  Google Scholar 

  29. Jacques L, Béchet E, and Kerschen G, Finite Elements in Analysis and Design 127 (2017) 6.

    Article  Google Scholar 

  30. Saruyama Y, Tatsumi S, and Yao H, Polym. Int. 66 (2017) 207.

    Article  CAS  Google Scholar 

  31. Ghomashchi R, and Nafisi S, Journal of Crystal Growth 458 (2017) 129.

    Article  CAS  Google Scholar 

  32. Buyco E H, and Davis F E, J. Chem. Eng. Data 15 (1970) 518.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to express their appreciation to Dr. Robin Francis for his assistance in conducting experiments and members of the UW IRC in Light Metal Casting Technology for their valuable advice and support. The support of the Ministry of Education, Science and Technological Development, the Republic of Serbia (Record #: 451-03-68/2020-14/200175 and ON172005) is also kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar M. Mitrašinović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrašinović, A.M., Momčilović, D.B. & Odanović, Z. Assessment of Grain Size and Grain Refinement Efficiency by Calculation of Released Heat Attributed to Formation of Primary Aluminum Crystals During Solidification of Al7Si4Cu Alloy. Trans Indian Inst Met 74, 1917–1922 (2021). https://doi.org/10.1007/s12666-021-02279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02279-6

Keywords

Navigation