Skip to main content
Log in

Infect while the iron is scarce: nutrient-explicit phage-bacteria games

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Marine microbial primary production is influenced by the availability and uptake of essential nutrients, including iron. Although marine microbes have evolved mechanisms to scavenge sub-nanomolar concentrations of iron, recent observations suggest that viruses may co-opt these very same mechanisms to facilitate infection. The “Ferrojan Horse Hypothesis” proposes that viruses incorporate iron atoms into their tail fiber proteins to adsorb to target host receptors. Here, we propose an evolutionary game theoretic approach to consider the joint strategies of hosts and viruses in environments with limited nutrients (like iron). We analyze the bimatrix game and find that evolutionarily stable strategies depend on the stability and quality of nutrient conditions. For example, in highly stable iron conditions, virus pressure does not change host uptake strategies. However, when iron levels are dynamic, virus pressure can lead to fluctuations in the extent to which hosts invest in metabolic machinery that increases both iron uptake and susceptibility to viral infection. Altogether, this evolutionary game model provides further evidence that viral infection and nutrient dynamics jointly shape the fate of microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All numerical integrations of ODEs were carried out via the fourth-order Runge–Kutta method as implemented by function ode45 in MATLAB v 2017a. Heteroclinic networks were visualized using R v 3.5.2’s [49] igraph v 1.2.2 [50] package. Scripts are available at https://doi.org/10.5281/zenodo.4750365

References

  1. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281(5374):237–240

    Article  CAS  Google Scholar 

  2. Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300(5621):944–947

    Article  CAS  Google Scholar 

  3. Saito MA, Bertrand EM, Dutkiewicz S, Bulygin VV, Moran DM, Monteiro FM, Follows MJ, Valois FW, Waterbury JB (2011) Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph crocosphaera watsonii. Proc Natl Acad Sci 108(6):2184–2189

    Article  CAS  Google Scholar 

  4. Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN, Saito MA, Sedwick PN, DeLong EF, Repeta DJ (2016) Siderophore-based microbial adaptations to iron scarcity across the eastern pacific ocean. Proc Natl Acad Sci 113(50):14237–14242

    Article  CAS  Google Scholar 

  5. Rue EL, Bruland KW (1995) Complexation of iron(iii) by natural organic ligands in the central north pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50(1):117–138. 

  6. Wu J, Boyle E, Sunda W, Wen L-S (2001) Soluble and colloidal iron in the oligotrophic north atlantic and north pacific. Science 293(5531):847–849

    Article  CAS  Google Scholar 

  7. Hogle SL, Dupont CL, Hopkinson BM, King AL, Buck KN, Roe KL, Stuart RK, Allen AE, Mann EL, Johnson ZI, Barbeau KA (2018) Pervasive iron limitation at subsurface chlorophyll maxima of the california current. Proc Natl Acad Sci 115(52):13300–13305

    Article  CAS  Google Scholar 

  8. Hutchins DA, Witter AE, Butler A, Luther III GW (1999) Competition among marine phytoplankton for different chelated iron species. Nature 400:858EP–

  9. Pitchford JW, Brindley J (1999) Iron limitation, grazing pressure and oceanic high nutrient-low chlorophyll (HNLC) regions. J Plankton Res 21(3):525–547

  10. Boyd PW (2002) Environmental factors controlling phytoplankton processes in the southern ocean1. J Phycol 38(5):844–861

    Article  Google Scholar 

  11. Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan WP, Landry MR, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial pacific ocean. Nature 383(6600):495–501

    Article  CAS  Google Scholar 

  12. Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD (2010) Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proc Natl Acad Sci 107(13):5887–5892

    Article  CAS  Google Scholar 

  13. Maldonado MT, Boyd PW, LaRoche J, Strzepek R, Waite A, Bowie AR, Croot PL, Frew RD, Price NM (2001) Iron uptake and physiological response of phytoplankton during a mesoscale southern ocean iron enrichment. Limnol Oceanogr 46(7):1802–1808

    Article  CAS  Google Scholar 

  14. Wells ML, Trick CG, Cochlan WP, Beall B (2009) Persistence of iron limitation in the western subarctic pacific SEEDS II mesoscale fertilization experiment. Deep-Sea Res II Top Stud Oceanogr 56(26):2810–2821

    Article  CAS  Google Scholar 

  15. Cochlan WP (2001) The heterotrophic bacterial response during a mesoscale iron enrichment experiment (ironex ii) in the eastern equatorial pacific ocean. Limnol Oceanogr 46(2):428–435

    Article  CAS  Google Scholar 

  16. Scott JE, Li K, Filkins LM, Zhu B, Kuchma SL, Schwartzman JD, OToole GA (2019) Pseudomonas aeruginosa can inhibit growth of streptococcal species via siderophore production. J Bacteriol

  17. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  18. Wilhelm SW, Trick CG (1994) Iron-limited growth of cyanobacteria: Multiple siderophore production is a common response. Limnol Oceanogr 39(8):1979–1984

    Article  CAS  Google Scholar 

  19. Butler A, Theisen RM (2010) Iron(III)-siderophore coordination chemistry: Reactivity of marine siderophores. Coord Chem Rev 254(3–4):288–296

    Article  CAS  Google Scholar 

  20. Hudson RJM, Morel FMM (1990) lron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnol Oceanogr 35(5):1002–1020

    Article  CAS  Google Scholar 

  21. Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR (2017) The evolution of siderophore production as a competitive trait. Evolution 71(6):1443–1455

    Article  CAS  Google Scholar 

  22. Brown SP, Taddei F (2007) The durability of public goods changes the dynamics and nature of social dilemmas. PLoS One 2(7):1–7

    Article  Google Scholar 

  23. Weitz JS, Eksin C, Paarporn K, Brown SP, Ratcliff WC (2016) An oscillating tragedy of the commons in replicator dynamics with game-environment feedback. Proc Natl Acad Sci

  24. Bonnain C, Breitbart M, Buck KN (2016) The ferrojan horse hypothesis: Iron-virus interactions in the ocean. Front Mar Sci 3:82

    Article  Google Scholar 

  25. Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363(4):01

  26. Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, van Raaij MJ (2010) Structure of the bacteriophage t4 long tail fiber receptor-binding tip. Proc Natl Acad Sci 107(47):20287–20292

    Article  CAS  Google Scholar 

  27. Caputi L, Carradec Q, Eveillard D, Kirilovsky A, Pelletier E, Pierella Karlusich JJ, Rocha Jimenez Vieira F, Villar E, Chaffron S, Malviya S, Scalco E, Acinas SG, Alberti A, Aury J-M, Benoiston A-S, Bertrand A, Biard T, Bittner L, Boccara M, Brum JR, Brunet C, Busseni G, Carratalá A, Claustre H, Coelho LP, Colin S, D’Aniello S, Da Silva C, Del Core M, Doré H, Gasparini S, Kokoszka F, Jamet J-L, Lejeusne C, Lepoivre C, Lescot M, Lima-Mendez G, Lombard F, Lukeš J, Maillet N, Madoui M-A, Martinez E, Mazzocchi MG, Néou MB, Paz-Yepes J, Poulain J, Ramondenc S, Romagnan J-B, Roux S, Salvagio Manta D, Sanges R, Speich S, Sprovieri M, Sunagawa S, Taillandier V, Tanaka A, Tirichine L, Trottier C, Uitz J, Veluchamy A, Veselá J, Vincent F, Yau S, Kandels-Lewis S, Searson S, Dimier C, Picheral M, Coordinators TO, Bork P, Boss E, de Vargas C, Follows MJ, Grimsley N, Guidi L, Hingamp P, Karsenti E, Sordino P, Stemmann L, Sullivan MB, Tagliabue A, Zingone A, Garczarek L, d’Ortenzio F, Testor P, Not F, d’Alcalà MR, Wincker P, Bowler C, Iudicone D (2019) Community-level responses to iron availability in open ocean plankton ecosystems. Glob Biogeochem Cycles 33(3):391–419

  28. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541EP–

  29. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45(6):1320–1328

    Article  Google Scholar 

  30. Menge DN, Weitz JS (2009) Dangerous nutrients: Evolution of phytoplankton resource uptake subject to virus attack. J Theor Biol 257(1):104–115

    Article  Google Scholar 

  31. Lee W, van Baalen M, Jansen VA (2016) Siderophore production and the evolution of investment in a public good: An adaptive dynamics approach to kin selection. J Theor Biol 388:61–71

    Article  CAS  Google Scholar 

  32. Hofbauer J (1996) Evolutionary dynamics for bimatrix games: A hamiltonian system? J Math Biol 34(5):675

    Article  CAS  Google Scholar 

  33. Tilman AR, Plotkin J, Akcay E (2019) Evolutionary games with environmental feedbacks. bioRxiv

  34. Rabsch W, Ma L, Wiley G, Najar FZ, Kaserer W, Schuerch DW, Klebba JE, Roe BA, Gomez JAL, Schallmey M, Newton SMC, Klebba PE (2007) Fepa- and tonb-dependent bacteriophage h8: Receptor binding and genomic sequence. J Bacteriol 189(15):5658–5674

    Article  CAS  Google Scholar 

  35. Poorvin L, Rinta-Kanto JM, Hutchins DA, Wilhelm SW (2004) Viral release of iron and its bioavailability to marine plankton. Limnol Oceanogr 49(5):1734–1741

    Article  CAS  Google Scholar 

  36. Poorvin L, Sander SG, Velasquez I, Ibisanmi E, LeCleir GR, Wilhelm SW (2011) A comparison of fe bioavailability and binding of a catecholate siderophore with virus-mediated lysates from the marine bacterium vibrio alginolyticus pwh3a. J Exp Mar Biol Ecol 399(1):43–47

    Article  CAS  Google Scholar 

  37. Gong L, Gao J, Cao M (2018) Evolutionary Game Dynamics for Two Interacting Populations under Environmental Feedback. ArXiv e-prints

  38. Krupa M (1997) Robust heteroclinic cycles. Journal of Nonlinear Science 7(2):129–176

    Article  Google Scholar 

  39. Hofbauer J (1994) Heteroclinic cycles in ecological differential equations. Equadiff 8:105–116

    Google Scholar 

  40. Brannath W (1994) Heteroclinic networks on the tetrahedron. Nonlinearity 7(5):1367–1384

  41. Lin Y-H, Weitz JS (2019) Spatial interactions and oscillatory tragedies of the commons. Phys Rev Lett 122:148102

    Article  CAS  Google Scholar 

  42. Hilbe C, Šimsa Š, Chatterjee K, Nowak MA (2018) Evolution of cooperation in stochastic games. Nature 559(7713):246–249

    Article  CAS  Google Scholar 

  43. Seymour J, Seuront L, Mitchell J (2007) Microscale gradients of planktonic microbial communities above the sediment surface in a mangrove estuary. Estuar Coast Shelf Sci 73(3):651–666

    Article  Google Scholar 

  44. Satinsky BM, Crump BC, Smith CB, Sharma S, Zielinski BL, Doherty M, Meng J, Sun S, Medeiros PM, Paul JH, Coles VJ, Yager PL, Moran MA (2014) Microspatial gene expression patterns in the amazon river plume. Proc Natl Acad Sci 111(30):11085–11090

    Article  CAS  Google Scholar 

  45. Seymour J, Seuront L, Doubell M, Waters R, Mitchell J (2006) Microscale patchiness of virioplankton. J Mar Biol Assoc U. K. 86(3):551–561

    Article  Google Scholar 

  46. Palma M, Worgall S, Quadri LEN (2003) Transcriptome analysis of the pseudomonas aeruginosa response to iron. Arch Microbiol 180(5):374–379

    Article  CAS  Google Scholar 

  47. Morrissey J, Bowler C (2012) Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 3:43

    Article  Google Scholar 

  48. Daughney CJ, Chtellier X, Chan A, Kenward P, Fortin D, Suttle CA, Fowle DA (2004) Adsorption and precipitation of iron from seawater on a marine bacteriophage (pwh3a-p1). Mar Chem 91(1):101–115

    Article  CAS  Google Scholar 

  49. Core R (2018) Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

  50. Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems:1695

Download references

Acknowledgements

The authors would like to thank Stephen Abedon, David Talmy, Mya Breitbart, and Rachel Kuske for their helpful input on manuscript drafts. The authors also thank Stephen J Beckett for code review, and the Simons Collaboration on Ocean Processes and Ecology (SCOPE) community for their support.

Funding

This research was funded by the Simons Foundation (SCOPE Award ID 329018 and 721231).

Author information

Authors and Affiliations

Authors

Contributions

DM and JSW conceived the work, DM performed analysis, and DM and JSW wrote and edited the manuscript.

Corresponding authors

Correspondence to Daniel Muratore or Joshua S. Weitz.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratore, D., Weitz, J.S. Infect while the iron is scarce: nutrient-explicit phage-bacteria games. Theor Ecol 14, 467–487 (2021). https://doi.org/10.1007/s12080-021-00508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-021-00508-8

Keywords

Navigation