Skip to main content

Advertisement

Log in

Erythrocyte Indices and Hemoglobin Analysis for α-Thalassemia Screening in an Area with High Carrying Rate

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Carriers of α-thalassemia exhibit hypochromic microcytosis with mean corpuscular volume (MCV) < 80 fL, mean corpuscular hemoglobin (MCH) < 27 pg, and reduced hemoglobin A2 (HbA2). We studied the distribution and diagnostic efficiencies of these indicators and their combinations in patients with and without alpha-thalassemia. Based on genetic diagnosis, 10,883 participants were divided into alpha-thalassemia group (n = 1655) and negative-for-alpha-thalassemia group (n = 9228). Erythrocyte parameters and hemoglobin analysis of the groups were analyzed. Moreover, we compared the four screening schemes (MCV/MCH, MCV/MCH/HbA2, MCV + MCH, MCV + MCH + HbA2) to find the best for α-thalassemia screening. The genotypes of --SEA/αα, and -α3.7/αα are the most prevalent with 54.9% and 27.6% in Fujian Province, China. There were significant differences in the distribution of MCV, MCH, and HbA2 in the two groups. Among the three, MCH exhibited the highest sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy. Although the four screening schemes have their advantages, there are significant differences in their sensitivity and specificity. MCV + MCH had the best diagnostic performance (72.6% sensitivity, 89.0% specificity) as well as the highest Youden index (61.59%). Our results showed that MCH could be used to screen α-thalassemia instead of MCV and HbA2. However, it is recommended that MCV/MCH/HbA2 screening be used in areas with high α-thalassemia incidence to increased sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Muncie HL, Campbell J Jr (2009) Alpha and beta thalassemia. Am Fam Physician 80(4):339–344

    PubMed  Google Scholar 

  2. Higgs MSDR (2018) Molecular basis and genetic modifiers of thalassemia. Hematol Oncol Clin North Am 32(2):177–191

    Article  Google Scholar 

  3. Clegg WDJJB (2001) Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ 79(8):704–712

    PubMed  PubMed Central  Google Scholar 

  4. Alkindi S, Al Zadjali S, Al Madhani A, Daar S, Al Haddabi H, Al Abri Q et al (2010) Forecasting hemoglobinopathy burden through neonatal screening in Omani neonates. Hemoglobin 34(2):135–144

    Article  CAS  Google Scholar 

  5. Baysal E (2011) alpha-Thalassemia syndromes in the United Arab Emirates. Hemoglobin 35(5–6):574–580

    Article  CAS  Google Scholar 

  6. Lai K, Huang G, SuY He L (2017) The prevalence of thalassemia in mainland China: evidence from epidemiological surveys. Sci Rep 7(1):920

    Article  Google Scholar 

  7. He S, Li J, Li DM, Yi S, Lu X, Luo Y et al (2018) Molecular characterization of alpha- and beta-thalassemia in the Yulin region of Southern China. Gene 655:61–64

    Article  CAS  Google Scholar 

  8. Xu XM, Zhou YQ, Luo GX, Liao C, Zhou M, Chen PY et al (2004) The prevalence and spectrum of alpha and beta thalassaemia in Guangdong Province: implications for the future health burden and population screening. J Clin Pathol 57(5):517–522

    Article  CAS  Google Scholar 

  9. He S, Qin Q, Yi S, Wei Y, Lin L, Chen S et al (2017) Prevalence and genetic analysis of alpha- and beta-thalassemia in Baise region, a multi-ethnic region in southern China. Gene 619:71–75

    Article  CAS  Google Scholar 

  10. Yao H, Chen X, Lin L, Wu C, Fu X, Wang H et al (2014) The spectrum of alpha- and beta-thalassemia mutations of the Li people in Hainan Province of China. Blood Cells Mol Dis 53(1–2):16–20

    Article  CAS  Google Scholar 

  11. Xu LP, Huang HL, Wang Y, Zheng L, Wang LS, Xu JB et al (2013) Molecular epidemiological analysis of alpha- and beta-thalassemia in Fujian province. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 30(4):403–406

    PubMed  Google Scholar 

  12. Waye CDHJS (1998) Hydrops fetalis caused by alpha-thalassemia: an emerging health care problem. Blood 91(7):2213–2222

    Article  Google Scholar 

  13. Ryan K, Bain BJ, Worthington D, James J, Plews D, Mason A et al (2010) Significant haemoglobinopathies: guidelines for screening and diagnosis. Br J Haematol 149(1):35–49

    Article  CAS  Google Scholar 

  14. Xu C, Liao B, Qi Y, Huangfu Z, ChenY Chen J (2018) Analysis of gene mutation types of alpha- and beta-Thalassemia in Fuzhou. Fujian Province in China Hemoglobin 42(3):143–147

    CAS  PubMed  Google Scholar 

  15. Chong SS, Boehm CD, Cutting GR, Higgs DR (2000) Simplified multiplex-PCR diagnosis of common southeast asian deletional determinants of alpha-thalassemia. Clin Chem 46(10):1692–1695

    Article  CAS  Google Scholar 

  16. Wang W, Chan AY, Chan LC, Ma ES, Chong SS (2005) Unusual rearrangement of the alpha-globin gene cluster containing both the -alpha3.7 and alphaalphaalphaanti-4.2 crossover junctions: clinical diagnostic implications and possible mechanisms. Clin Chem 51(11):2167–2170

    Article  CAS  Google Scholar 

  17. Li CK (2017) New trend in the epidemiology of thalassaemia. Best Pract Res Clin Obstet Gynaecol 39:16–26

    Article  Google Scholar 

  18. Zheng X, Lin M, Yang H, Pan MC, Cai YM, Wu JR et al (2016) Molecular epidemiological characterization and health burden of thalassemias in the Chaoshan Region, People’s Republic of China. Hemoglobin 40(2):138–142

    Article  CAS  Google Scholar 

  19. Singha K, Taweenan W, FucharoenS Fucharoen G (2019) Erythrocyte indices in a large cohort of beta-thalassemia carrier: Implication for population screening in an area with high prevalence and heterogeneity of thalassemia. Int J Lab Hematol 41(4):513–518

    PubMed  Google Scholar 

  20. Karnpean R, Pansuwan A, FucharoenS Fucharoen G (2011) Evaluation of the URIT-2900 automated hematology analyzer for screening of thalassemia and hemoglobinopathies in Southeast Asian populations. Clin Biochem 44(10–11):889–893

    Article  CAS  Google Scholar 

  21. Stephens AD, Angastiniotis M, Baysal E, Chan V, Fucharoen S, Giordano PC et al (2012) ICSH recommendations for the measurement of haemoglobin A2. Int J Lab Hematol 34(1):1–13

    Article  CAS  Google Scholar 

  22. Mosca A, Paleari R, Ivaldi G, GalanelloP R, Giordano C (2009) The role of haemoglobin A(2) testing in the diagnosis of thalassaemias and related haemoglobinopathies. J Clin Pathol 62(1):13–17

    Article  CAS  Google Scholar 

  23. El-Agouza I, Abu ShahlaM Sirdah A (2002) The effect of iron deficiency anaemia on the levels of haemoglobin subtypes: possible consequences for clinical diagnosis. Clin Lab Haematol 24(5):285–289

    Article  CAS  Google Scholar 

  24. Verhovsek M, So CC, O’Shea T, Gibney GT, Ma ES, Steinberg MH et al (2012) Is HbA2 level a reliable diagnostic measurement for beta-thalassemia trait in people with iron deficiency? Am J Hematol 87(1):114–116

    Article  CAS  Google Scholar 

  25. Bain BJ (2011) Haemoglobinopathy diagnosis: algorithms, lessons and pitfalls. Blood Rev 25(5):205–213

    Article  Google Scholar 

  26. Higgs HCLDR (2010) Alpha-thalassaemia. Orphanet J Rare Dis 5:13

    Article  Google Scholar 

  27. Chui DH, FucharoenV Chan S (2003) Hemoglobin H disease: not necessarily a benign disorder. Blood 101(3):791–800

    Article  CAS  Google Scholar 

  28. Kwiatkowski SFAJL (2015) Increasing prevalence of thalassemia in America: implications for primary care. Ann Med 47(7):592–604

    Article  Google Scholar 

  29. Neufeld EJ (2006) Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions. Blood 107(9):3436–3441

    Article  CAS  Google Scholar 

  30. de Dreuzy E, Bhukhai K, LeboulchE Payen P (2016) Current and future alternative therapies for beta-thalassemia major. Biomed J 39(1):24–38

    Article  Google Scholar 

  31. Pierre QCTTG (2016) MRI measurements of iron load in transfusion-dependent patients: implementation, challenges, and pitfalls. Pediatr Blood Cancer 63(5):773–780

    Article  Google Scholar 

  32. Giardina REAPJ (2011) How I treat thalassemia. Blood 118(13):3479–3488

    Article  Google Scholar 

  33. Angelucci E, Matthes-Martin S, Baronciani D, Bernaudin F, Bonanomi S, Cappellini MD et al (2014) Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica 99(5):811–820

    Article  Google Scholar 

  34. Algiraigri AH, Wright NAM, PaolucciA Kassam EO (2017) Hydroxyurea for nontransfusion-dependent beta-thalassemia: a systematic review and meta-analysis. Hematol Oncol Stem Cell Ther 10(3):116–125

    Article  CAS  Google Scholar 

  35. Shaji SARV (2017) Cure for thalassemia major—from allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica 102(2):214–223

    Article  Google Scholar 

  36. Ferrari G, CavazzanaF Mavilio M (2017) Gene therapy approaches to hemoglobinopathies. Hematol Oncol Clin North Am 31(5):835–852

    Article  Google Scholar 

  37. Origa GRR (2010) Beta-thalassemia. Orphanet J Rare Dis 5:11

    Article  Google Scholar 

  38. (2017) Committee Opinion No. 691 summary: carrier screening for genetic conditions. Obstet Gynecol 129(3): 597–599

Download references

Funding

The National Natural Science Foundation of China (ID 81970170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangpu Xu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical Approval

The present study was approved by the Protection of Human Ethics Committee of Fujian Maternity and Child Health Hospital, affiliated hospital of Fujian Medical University (NO.2016-101).

Patient Consent

Written consent taken from each patient and/or their legal guardians at the entry into the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Huang, H., Wu, X. et al. Erythrocyte Indices and Hemoglobin Analysis for α-Thalassemia Screening in an Area with High Carrying Rate. Indian J Hematol Blood Transfus 38, 352–358 (2022). https://doi.org/10.1007/s12288-021-01449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-021-01449-2

Keywords

Navigation