Skip to main content
Log in

Mathematical modelling of induced magnetisation @ Mn(II) ion doped in perovskite host

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present study, zero field splitting (ZFS) parameters are investigated for Mn(II) ion doped perovskites, viz. \(\hbox {PbTiO}_{3},\hbox {BaTiO}_{3}\) and \(\hbox {SrTiO}_{3}\). The ZFS parameter and magnetisation induced in the host are investigated using quantum mechanical perturbation theory and classical statistics. A mathematical derivation is proposed to study magnetisation and ZFS due to charge distribution generated electric field and spin–orbit coupling (SOC). The computation of ZFS parameters is performed using non-hybrid functional unrestricted Kohn–Sham (UKS). The mathematical formulation is valid for perovskites in the non-ferroelectric state and finite temperature range. The contour plot and mesh surface of the spin–orbit interaction and induced magnetisation are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R Wang, M Mujahid, Y Duan, Z K Wang, J Xue and Y Yang, Adv. Func. Mater. 29, 1808843 (2019)

    Article  Google Scholar 

  2. S Yamada, N Abe, H Sagayama, K Ogawa, T Yamagami and T Arima, Phys. Rev. Lett. 123, 126602 (2019)

    Article  ADS  Google Scholar 

  3. M Chakraborty, V K Rai and K Mitra, Pramana – J. Phys. 92: 46 (2019)

  4. M Chakraborty, S Chaudhuri, V K Rai and V Mishra, J. Mater. Sci.: Mater. 27, 7478 (2016)

    Article  Google Scholar 

  5. R Kumar, R J Choudhary and S I Patil, NATO Science Series 235, 535 (2007)

    Article  Google Scholar 

  6. S Hikami and Y Matsuda, Jpn. J. Appl. Phys. 26, 26 (1987)

    Article  Google Scholar 

  7. C Duboc, D Ganyushin, K Sivalingam, M Collomb and F Neese, J. Phys. Chem. A 114, 10750 (2010)

    Article  Google Scholar 

  8. M Atanasov and F Neese, Coordin. Chem. Rev. 257, 27 (2013)

    Article  Google Scholar 

  9. R Maurice, R Broer, N Guihery and C Graaf, Handbook of relativistic quantum chemistry (Springer, Berlin, 2016)

    Google Scholar 

  10. J A Clayton, K Keller, M Qi, J Wegner, V Koch, H Hintz, A Godt, S Han, G Jeschke, M S Sherwin and M Yulikov, Phys. Chem. Chem. Phys. 15, 1 (2018)

    Google Scholar 

  11. J Lu, I Ozel, C A Belvin, X Li, G Skorupskii, L Sun, O Okai, M Dinca, N Gedik and K A Nelson, Chem. Sci. 8, 7312 (2017)

    Article  Google Scholar 

  12. J Kobak, A Bogucki, T Smolenski, M Papaj, M Kossacki, A Golnik and W Pacuski, Phys. Rev. B 97, 04530 (2018)

    Article  Google Scholar 

  13. M Zajac, C Rudowicz, H Ohta and T Sakurai, J. Magn. Magn. Mater. 449, 94 (2018)

    Article  ADS  Google Scholar 

  14. A W Lloyd, H M Moylan and J W McDouall, Magnetochemistry 5, 3 (2019)

    Article  Google Scholar 

  15. D A Garanin and E M Chudnovsky, Phys. Rev. B 56, 11102 (1997)

    Article  ADS  Google Scholar 

  16. M N Leuenberger and D Loss, Nature 410, 789 (2001)

    Article  ADS  Google Scholar 

  17. S Loth, K Von Bergmann, M Ternes, A F Otte, C P Lutz and A J Heinrich, Nat. Phys. 6, 340 (2010)

    Article  Google Scholar 

  18. C Kittel, Introduction to solid state physics (Wiley, New York, 2009)

    MATH  Google Scholar 

  19. M Schlaak and A Weiss, Z. Naturforsch. A 27, 1624 (1972)

    Article  ADS  Google Scholar 

  20. T Miyadi and O Okada, Jpn. J. Phys. 17, 231 (1978)

    ADS  Google Scholar 

  21. H Watanabe, Prog. Theor. Phys. 18, 405 (1957)

    Article  ADS  Google Scholar 

  22. M Blume and R Orbach, Phys. Rev. 127, 1587 (1962)

    Article  ADS  Google Scholar 

  23. R Kripal and V Mishra, J. Mag. Res. 172, 201 (2005)

    Article  ADS  Google Scholar 

  24. R HariKrishna, B M Nagabhushana, H Nagabhushana, D L Monika, R Sivaramakrishna, C Shivakumara, R P S Chakradhar and T Thomas, J. Lumin. 155, 125 (2014)

    Article  Google Scholar 

  25. S K Misra, S I Andronenko, A Thurber, A Punnoose and A Nalepa, J. Magn. Magn. Mater. 363, 82 (2014)

    Article  ADS  Google Scholar 

  26. R Kripal, M Maurya and H Govind, Physica B 392, 281 (2007)

    Article  ADS  Google Scholar 

  27. R Kripal and S Pandey, Physica B 444, 14 (2014)

    Article  ADS  Google Scholar 

  28. M Chakraborty, V K Rai and V Mishra, Optik 127, 4333 (2016)

    Article  ADS  Google Scholar 

  29. M Chakraborty and V K Rai, Pramana – J. Phys. 89: 88 (2017)

    Article  ADS  Google Scholar 

  30. X Lan, S Kong and W Y Zhang, Eur. Phys. J. B 84, 357 (2011)

    Article  ADS  Google Scholar 

  31. A Haque, D Ghosh, U Dutta, A Shukla, A Gayen, P Mahata, A K Kundu and Md Seikh, J. Magn. Magn. Mater. 494, 165847 (2020)

    Article  Google Scholar 

  32. J Meng, L Zhang, F Yao, X Liu, J Meng and H Zhang, Inorg. Chem. 56, 6371 (2017)

    Article  Google Scholar 

  33. I Alkotra and J Elguero, New J. Chem. 42, 13889 (2018)

    Article  Google Scholar 

  34. S Biswas and S Pal, Rev. Adv. Mater. Sci. 53, 206 (2018)

    Article  Google Scholar 

  35. T Thonhauser, Int. J. Mod. Phys. B 25, 1429 (2011)

    Article  ADS  Google Scholar 

  36. J Shi, G Vignale and D Xiao, Phys. Rev. Lett. 99, 197202 (2007)

    Article  ADS  Google Scholar 

  37. S Acheche, R Nourafkan and A M S Tremblay, Phys. Rev. B 99, 075144 (2019)

    Article  ADS  Google Scholar 

  38. T N Ikeda and M Sato, Phys. Rev. B 100, 214424 (2019)

    Article  ADS  Google Scholar 

  39. G P Zhang, M S Si, M Murakami, Y H Bai and T F George, Nat. Commun. 9, 3031 (2018)

    Article  ADS  Google Scholar 

  40. G Vignale and M Rasolt, Phys. Rev. B 37, 10685 (1988)

    Article  ADS  Google Scholar 

  41. G Vignale and M Rasolt, Phys. Rev. Lett. 59, 2360 (1987)

    Article  ADS  Google Scholar 

  42. J H Barrett, Phys. Rev. 86, 1 (1952)

    Article  Google Scholar 

  43. J Slater, Phys. Rev. 78, 6 (1950)

    Article  Google Scholar 

  44. F Neese, ORCAAn Ab Initio, Density Functional and Semiempirical Program Package, version 3.0.3 (Max-Planck-Institute for Chemische Energiekonversion, Germany)

  45. F Neese, Wiley Interdisciplinary Reviews Comput. Mol. Sci. 2, 73 (2012)

    Article  Google Scholar 

  46. N Naka, K Fukai, Y Handa and I Akimoto, Phys. Rev. B 88, 035205 (2013)

    Article  ADS  Google Scholar 

  47. G Dresselhaus, A F Kip and C Kittel, Phys. Rev. 98, 2 (1955)

    Google Scholar 

  48. D Dai, H Xiang and M H Whangbo, J. Comput. Chem. 29, 2187 (2008)

    Article  Google Scholar 

  49. R K Pathria and P D Beale, Statistical mechanics (Butterworth-Heinemann, India, 1996)

    MATH  Google Scholar 

  50. B A Hess, C M Marian, U Wahlgren and O Gropen, Chem. Phys. Lett. 251, 365 (1996)

    Article  ADS  Google Scholar 

  51. A D Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  52. S Zein, C Duboc, W Lubitz and F Neese, Inorg. Chem. 47, 134 (2008)

    Article  Google Scholar 

  53. K Sugisaki, K Toyota, K Sato, D Shiomi and T Takui, Phys. Chem. Chem. Phys. 19, 30128 (2017)

    Article  Google Scholar 

  54. R Pederson and S N Khanna, Phys. Rev. B 60, 9566 (1999)

    Article  ADS  Google Scholar 

  55. E F Pettersen, T D Goddard, C C Huang, G S Couch, D M Greenblatt, E C Meng and T E Ferrin, J. Comput. Chem. 25, 1605 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University Grants Commission (UGC), New Delhi, India for providing financial assistance in the form of Colleges with Potential for Excellence (CPE) status to St. Xavier’s College, Ranchi, India (DO/21-49/2014/PE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitesh Chakraborty.

Appendix A

Appendix A

$$\begin{aligned}&{L}_{+} |L, {M}_{L} \rangle =\sqrt{( L-M_{L})( L+M_{L} +1)}|L, M_{L+1}\rangle \\&{L}_{-} |L, {M}_{L} \rangle =\sqrt{( L-M_{L})( L+M_{L} +1)} |L, M_{L-1}\rangle \\&{L}_{z} |L, {M}_{L} \rangle ={M}_{L}|L, {M}_{L}\rangle . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, M., Chaudhuri, S. & Mukherjee, A. Mathematical modelling of induced magnetisation @ Mn(II) ion doped in perovskite host. Pramana - J Phys 95, 92 (2021). https://doi.org/10.1007/s12043-021-02086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02086-0

Keywords

PACS Nos

Navigation