Skip to main content

Advertisement

Log in

Camouflage design, assessment and breaking techniques: a survey

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Few animals can hide their signatures into their surroundings to hunt or avoid being hunted, termed as natural camouflage. Natural camouflage inspires researchers to design various algorithms to artificially create camouflage images and widely apply them in the military field. It is also essential to evaluate the effectiveness of artificially created camouflage images. Several algorithms have been developed in the literature to evaluate camouflage design techniques. Camouflage breaking systems extract the object from its surroundings. Due to the complexity of the problem, it is challenging to design an algorithm for breaking camouflage. The camouflaged objects cannot be adequately visible by the human vision systems. Existing works on these problems have been done based on either biological characteristics or artificially. This article discusses various camouflage design, assessment, and breaking techniques in the literature. This article also addresses several issues of interest as well as future research direction in this area. We hope this review will help the reader learn the recent advances in camouflage design, assessment, and breaking techniques available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: International conference on computer vision systems, pp. 66–75. Springer, New York (2008)

  2. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 1597–1604. IEEE (2009)

  3. Allen, J.J., Mäthger, L.M., Barbosa, A., Buresch, K.C., Sogin, E., Schwartz, J., Chubb, C., Hanlon, R.T.: Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues. Proc. R. Soc. B Biol. Sci. 277(1684), 1031–1039 (2010)

    Article  Google Scholar 

  4. Arsenault, A.C., Míguez, H., Kitaev, V., Ozin, G.A., Manners, I.: A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: A step towards photonic ink (p-ink). Adv. Mater. 15(6), 503–507 (2003)

    Article  Google Scholar 

  5. Arsenault, A.C., Puzzo, D.P., Manners, I., Ozin, G.A.: Photonic-crystal full-colour displays. Nat. Photonics 1(8), 468–472 (2007)

    Article  Google Scholar 

  6. Aviram, C., Rotman, S.: Evaluating TNO human target detection experimental results agreement with various image metrics. Tech. rep., BEN-GURION UNIV OF THE NEGEV BEERSHEBA (ISRAEL) DEPT OF ELECTRICAL AND (2000)

  7. Aviram, G., Rotman, S.: Modeling human false target detection decision behavior in infrared images, using a statistical texture image metric. In: 21st IEEE Convention of the Electrical and Electronic Engineers in Israel. Proceedings (Cat. No. 00EX377), pp. 393–397. IEEE (2000)

  8. Aviram, G., Rotman, S.R.: Evaluating human detection performance of targets and false alarms, using a statistical texture image metric. Opt. Eng. 39(8), 2285–2295 (2000)

    Article  Google Scholar 

  9. Aviram, G., Rotman, S.R.: Analyzing the effect of imagery wavelength on the agreement between various image metrics and human detection performance of targets embedded in natural images. Opt. Eng. 40(9), 1877–1884 (2001)

    Article  Google Scholar 

  10. Bai, X., Liao, N., Wu, W.: Assessment of camouflage effectiveness based on perceived color difference and gradient magnitude. Sensors 20(17), (2020)

  11. Bao, L., Zhou, Y.: Image encryption: Generating visually meaningful encrypted images. Inf. Sci. 324, 197–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barbosa, A., Allen, J.J., Mäthger, L.M., Hanlon, R.T.: Cuttlefish use visual cues to determine arm postures for camouflage. Proc. R. Soc. Biol. Sci. 279(1726), 84–90 (2012)

    Article  Google Scholar 

  13. Barbosa, A., Mäthger, L.M., Buresch, K.C., Kelly, J., Chubb, C., Chiao, C.C., Hanlon, R.T.: Cuttlefish camouflage: the effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns. Vis. Res. 48(10), 1242–1253 (2008)

    Article  Google Scholar 

  14. Beiderman, Y., Teicher, M., Garcia, J., Mico, V., Zalevsky, Z.: Optical technique for classification, recognition and identification of obscured objects. Opt. Commun. 283(21), 4274–4282 (2010)

    Article  Google Scholar 

  15. Bhajantri, N.U., Nagabhushan, P.: Camouflage defect identification: a novel approach. In: 9th IEEE International Conference on Information Technology, ICIT’06, pp. 145–148 (2006)

  16. Bian, P., Zhang, L.: Biological plausibility of spectral domain approach for spatiotemporal visual saliency. In: International conference on neural information processing, pp. 251–258. Springer (2008)

  17. Bideau, P., Learned-Miller, E.: It’s moving! a probabilistic model for causal motion segmentation in moving camera videos. In: European Conference on Computer Vision (ECCV), pp. 433–449. Springer (2016)

  18. Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: CVPR, pp. 2846–2854 (2016)

  19. Birkemark, C.M.: CAMEVA, a methodology for estimation of target detectability. Opt. Eng. 40(9), 1835–1843 (2001)

    Article  Google Scholar 

  20. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact++: Better real-time instance segmentation. arXiv (2019)

  21. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: Real-time instance segmentation. In: Proceedings of the IEEE international conference on computer vision, pp. 9157–9166 (2019)

  22. Boot, W.R., Neider, M.B., Kramer, A.F.: Training and transfer of training in the search for camouflaged targets. Atten. Percept. Psychophys. 71(4), 950–963 (2009)

    Article  Google Scholar 

  23. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: A benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Boult, T.E., Micheals, R.J., Gao, X., Eckmann, M.: Into the woods: Visual surveillance of noncooperative and camouflaged targets in complex outdoor settings. Proc. IEEE 89(10), 1382–1402 (2001)

    Article  Google Scholar 

  25. Brady, M.J., Kersten, D.: Bootstrapped learning of novel objects. J. Vis. 3(6), 413–422 (2003)

    Article  Google Scholar 

  26. Bravo, M.J., Farid, H.: A scale invariant measure of clutter. J. Vis. 8(1), 23–23 (2008)

    Article  Google Scholar 

  27. Bruce, N.D., Tsotsos, J.K.: Saliency, attention, and visual search: An information theoretic approach. J. Vis. 9(3), 5–5 (2009)

    Article  Google Scholar 

  28. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6154–6162 (2018)

  29. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  30. Chandesa, T., Pridmore, T., Bargiela, A.: Detecting occlusion and camouflage during visual tracking. In: IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 468–473 (2009)

  31. Chang, C.C., Lee, Y.H., Lin, C.J., Liu, B.S., Shih, Y.C.: Visual assessment of camouflaged targets with different background similarities. Percept. Mot. Skills 114(2), 527–541 (2012)

    Article  Google Scholar 

  32. Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., Yan, Y.: Blendmask: Top-down meets bottom-up for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8573–8581 (2020)

  33. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang, W., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4974–4983 (2019)

  34. Cheng, X.P., Zhao, D.P., Yu, Z.J., Zhang, J.H., Bian, J.T., Yu, D.B.: Effectiveness evaluation of infrared camouflage using image saliency. Infrared Phys. Technol. 95, 213–221 (2018)

    Article  Google Scholar 

  35. Cho, W.J., Kim, M., Lee, E., Kim, S., Han, J., Han, K.H.: Camouflage assessment of color pattern strategies in different environmental contexts. In: C. Stephanidis (ed.) HCI International 2015 - Posters’ Extended Abstracts, pp. 170–173. Springer International Publishing (2015)

  36. Chu, H.K., Hsu, W.H., Mitra, N.J., Cohen-Or, D., Wong, T.T., Lee, T.Y.: Camouflage images. ACM Trans. Graph. 29(4), 51–59 (2010)

    Article  Google Scholar 

  37. Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: An algorithm for detection of partially camouflaged people. In: 6th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS’09, pp. 340–345 (2009)

  38. Copeland, A.C., Trivedi, M.M.: Models and metrics for signature strength evaluation of camouflaged targets. In: Algorithms for synthetic aperture radar imagery IV, vol. 3070, pp. 194–199. International Society for Optics and Photonics (1997)

  39. Copeland, A.C., Trivedi, M.M.: Models and metrics for signature strength evaluation of camouflaged targets. SPIE 3070, 194–199 (1997)

    Google Scholar 

  40. Copeland, A.C., Trivedi, M.M.: Signature strength metrics for camouflaged targets corresponding to human perceptual cues. Opt. Eng. 37(2), 582–591 (1998)

    Article  Google Scholar 

  41. Copeland, A.C., Trivedi, M.M.: Computational models for search and discrimination. Opt. Eng. 40(9), 1885–1895 (2001)

    Article  Google Scholar 

  42. Copeland, A.C., Trivedi, M.M., McManamey, J.R.: Evaluation of image metrics for target discrimination using psychophysical experiments. Opt. Eng. 35(6), 1714–1722 (1996)

    Article  Google Scholar 

  43. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

  44. Cordts, M., Omran, M., Ramos, S., Scharwächter, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset. In: CVPR Workshop on The Future of Datasets in Vision (2015)

  45. Cott, H.B.: Adaptive coloration in animals (1940)

  46. Crawford, E., Pineau, J.: Spatially invariant unsupervised object detection with convolutional neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3412–3420 (2019)

  47. Culpepper, J.B.: Texture metric that predicts target detection performance. Opt. Eng. 54(12), 123101 (2015)

    Article  Google Scholar 

  48. Dehui, Z., Pengye, W., Hengbo, Z., Zongge, D.: Camouflage effectiveness assessment based on fusion with constant color background. In: Journal of Physics: Conference Series. IOP Publishing (2018)

  49. Du, H., Jin, X., Mao, X.: Digital camouflage images using two-scale decomposition. In: Computer Graphics Forum, vol. 31, pp. 2203–2212. Wiley Online Library (2012)

  50. Du, H., Shu, L.: Camouflage images based on mean value interpolation. In: Proceedings of the 2012 International Conference on Information Technology and Software Engineering, pp. 775–782. Springer (2013)

  51. Dwaraknath, A., Menghani, D., Mongia, M.: Fast unsupervised object localization (2016)

  52. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  53. Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2777–2787 (2020)

  54. Fang, Z., Zhang, X., Deng, X., Cao, T., Zheng, C.: Camouflage people detection via strong semantic dilation network. In: Proceedings of the ACM Turing Celebration Conference-China, pp. 1–7 (2019)

  55. Fecteau, J.H., Munoz, D.P.: Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10(8), 382–390 (2006)

    Article  Google Scholar 

  56. Feng, X., Guoying, C., Richang, H., Jing, G.: Camouflage texture evaluation using a saliency map. Multimed. Syst. 21(2), 169–175 (2015)

    Article  Google Scholar 

  57. Friškovec, M., Gabrijelčič, H.: Development of a procedure for camouflage pattern design. Fibres Textiles Eastern Europe 18(4), 81 (2010)

    Google Scholar 

  58. Friškovec, M., Gabrijelčič, H., Simončič, B.: Design and evaluation of a camouflage pattern for the Slovenian urban environment. Journal of imaging science and technology 54(2), 20507–1–20507–11 (2010)

  59. Fu, C.Y., Shvets, M., Berg, A.C.: RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free. arXiv (2019)

  60. Galun, M., Sharon, E., Basri, R., Brandt, A.: Texture segmentation by multiscale aggregation of filter responses and shape elements. In: Proceedings of 9th IEEE International Conference on Computer Vision, pp. 716–723 (2003)

  61. Gao, D., Mahadevan, V., Vasconcelos, N.: On the plausibility of the discriminant center-surround hypothesis for visual saliency. J. Vis. 8(7), 13–13 (2008)

    Article  Google Scholar 

  62. Gao, J., Wang, J., Dai, S., Li, L.J., Nevatia, R.: Note-rcnn: Noise tolerant ensemble rcnn for semi-supervised object detection. In: ICCV, pp. 9508–9517 (2019)

  63. Gretzmacher, F.M., Ruppert, G.S., Nyberg, S.: Camouflage assessment considering human perception data. In: Aerospace/Defense Sensing and Controls, pp. 58–67 (1998)

  64. Gretzmacher, F.M., Ruppert, G.S., Nyberg, S.: Camouflage assessment considering human perception data. In: Watkins, W.R., Clement, D. (eds.) Targets and Backgrounds: Characterization and Representation IV, vol. 3375, pp. 58–67. International Society for Optics and Photonics, SPIE (1998)

  65. Guo, C., Ma, Q., Zhang, L.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

  66. Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Process. 19(1), 185–198 (2009)

    MathSciNet  MATH  Google Scholar 

  67. Hanlon, R.: Cephalopod dynamic camouflage. Curr. Biol. 17(11), R400–R404 (2007)

    Article  Google Scholar 

  68. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency (2007)

  69. Harville, M., Gordon, G., Woodfill, J.: Foreground segmentation using adaptive mixture models in color and depth. In: Proceedings of IEEE Workshop on Detection and Recognition of Events in Video, pp. 3–11 (2001)

  70. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)

  71. He, Z., He, H.: Unsupervised multi-object detection for video surveillance using memory-based recurrent attention networks. Symmetry 10(9), 375–388 (2018)

    Article  Google Scholar 

  72. Hecker, R.: Camaeleon–camouflage assessment by evaluation of local energy, spatial frequency, and orientation. In: Characterization, Propagation, and Simulation of Sources and Backgrounds II, vol. 1687, pp. 342–349. International Society for Optics and Photonics (1992)

  73. Heinrich, D.H., Selj, G.K.: Evaluation of camouflage pattern performance of textiles by human observers and camaeleon. In: Target and Background Signatures III, vol. 10432, p. 1043206. International Society for Optics and Photonics (2017)

  74. Hou, D., Qin, C., Yu, N., Zhang, W.: Reversible visual transformation via exploring the correlations within color images. J. Vis. Commun. Image Represent. 53, 134–145 (2018)

    Article  Google Scholar 

  75. Hou, D., Zhang, W., Yu, N.: Image camouflage by reversible image transformation. J. Vis. Commun. Image Represent. 40, 225–236 (2016)

    Article  Google Scholar 

  76. Hou, J.Y.Y.H.W., Li, J.: Detection of the mobile object with camouflage color under dynamic background based on optical flow. Procedia Engineering 15, 2201–2205 (2011)

  77. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: 2007 IEEE Conference on computer vision and pattern recognition, pp. 1–8. IEEE (2007)

  78. Houlbrook, A.W., Gilmore, M.A., Moorhead, I.R., Filbee, D.R., Stroud, C.A., Hutchings, G., Kirk, A.: Scene simulation for camouflage assessment. In: Targets and Backgrounds VI: Characterization, Visualization, and the Detection Process, vol. 4029, pp. 247–255. International Society for Optics and Photonics (2000)

  79. Hu, Y., Xie, X., Ma, W.Y., Chia, L.T., Rajan, D.: Salient region detection using weighted feature maps based on the human visual attention model. In: Pacific-Rim Conference on Multimedia, pp. 993–1000. Springer (2004)

  80. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring r-cnn. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6409–6418 (2019)

  81. Huang, Z.Q., Jiang, Z.: Tracking camouflaged objects with weighted region consolidation. In: Proceedings of Digital Image Computing: Techniques and Applications, DICTA’05, pp. 24–31 (2005)

  82. Itti, L.: Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Vis. Cogn. 12(6), 1093–1123 (2005)

    Article  Google Scholar 

  83. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  84. Jeong, J., Lee, S., Kim, J., Kwak, N.: Consistency-based semi-supervised learning for object detection. In: H.M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.B. Fox, R. Garnett (eds.) NIPS, pp. 10758–10767 (2019)

  85. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: ICCV, pp. 9865–9874 (2019)

  86. Jia, Q., Liu, J., Hu, J., Liu, J., Zhu, L., Lin, Z.: Evaluation of camouflage effect based on statistical texture features. In: Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science, pp. 822–825 (2019)

  87. Jiang, Z.: Object modelling and tracking in videos via multidimensional features. ISRN Signal Process. 2011, 1–15 (2011)

    Article  Google Scholar 

  88. KaewTrakulPong, P., Bowden, R.: A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes. Image Vis. Comput. 21(10), 913–929 (2003)

    Article  Google Scholar 

  89. Kanso, A., Ghebleh, M.: An algorithm for encryption of secret images into meaningful images. Opt. Lasers Eng. 90, 196–208 (2017)

    Article  Google Scholar 

  90. Kelman, E.J., Osorio, D., Baddeley, R.J.: A review of cuttlefish camouflage and object recognition and evidence for depth perception. J. Exp. Biol. 211(11), 1757–1763 (2008)

    Article  Google Scholar 

  91. Kim, H., Ge, J., Kim, J., Choi, S.e., Lee, H., Lee, H., Park, W., Yin, Y., Kwon, S.: Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nature Photonics 3(9), 534–540 (2009)

  92. Kim, S.: Unsupervised spectral-spatial feature selection-based camouflaged object detection using VNIR hyperspectral camera. Sci. World J. 2014, 1–8 (2014)

    Google Scholar 

  93. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. In: Matters of intelligence, pp. 115–141. Springer (1987)

  94. Lai, I.J., Tsai, W.H.: Secret-fragment-visible mosaic image-a new computer art and its application to information hiding. IEEE Trans. Inf. Forensics Secur. 6(3), 936–945 (2011)

    Article  Google Scholar 

  95. Lama, R.K., Han, S.J., Kwon, G.R.: Svd based improved secret fragment visible mosaic image generation for information hiding. Multimed. Tools Appl. 73(2), 873–886 (2014)

    Article  Google Scholar 

  96. Lamdouar, H., Yang, C., Xie, W., Zisserman, A.: Betrayed by motion: Camouflaged object discovery via motion segmentation. In: Asian Conference on Computer Vision (ACCV) (2020)

  97. Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. Comput. Vis. Image Underst. 184, 45–56 (2019)

    Article  Google Scholar 

  98. Le, T.N., Nguyen, V., Le, C., Nguyen, T.C., Tran, M.T., Nguyen, T.V.: Camoufinder: Finding camouflaged instances in images. In: AAAI (2021)

  99. Lee, Y., Park, J.: Centermask: Real-time anchor-free instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13906–13915 (2020)

  100. Lee, Y.L., Tsai, W.H.: A new secure image transmission technique via secret-fragment-visible mosaic images by nearly reversible color transformations. IEEE Trans. Circuits Syst. Video Technol. 24(4), 695–703 (2013)

    Google Scholar 

  101. Lev-Yadun, S., Dafni, A., Flaishman, M.A., Inbar, M., Izhaki, I., Katzir, G., Ne’eman, G.: Plant coloration undermines herbivorous insect camouflage. BioEssays 26(10), 1126–1130 (2004)

    Article  Google Scholar 

  102. Li, C., Zhao, X., Wan, Y.: The camouflage color target detection with deep networks. In: International Conference on Neural Information Processing, pp. 476–485. Springer (2017)

  103. Li, S., Florencio, D., Li, W., Zhao, Y., Cook, C.: A fusion framework for camouflaged moving foreground detection in the wavelet domain. IEEE Trans. Image Process. 27(8), 3918–3930 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  104. Li, S., Florencio, D., Zhao, Y., Cook, C., Li, W.: Foreground detection in camouflaged scenes. arXiv (2017)

  105. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 1–48 (2013)

    Article  Google Scholar 

  106. Liming, S., Weidong, G.: A new camouflage texture evaluation method based on WSSIM and nature image features. In: IEEE International Conference on Multimedia Technology (ICMT), pp. 1–4 (2010)

  107. Lin, C.J., Chang, C.C., Lee, Y.H.: Evaluating camouflage design using eye movement data. Appl. Ergon. 45(3), 714–723 (2014)

    Article  Google Scholar 

  108. Lin, C.J., Chang, C.C., Liu, B.S.: Developing and evaluating a target-background similarity metric for camouflage detection. PLoS ONE 9(2), 1–11 (2014)

    Article  Google Scholar 

  109. Lin, C.J., Prasetyo, Y.T.: A metaheuristic-based approach to optimizing color design for military camouflage using particle swarm optimization. Color Res. Appl. 44(5), 740–748 (2019)

    Article  Google Scholar 

  110. Lin, C.J., Prasetyo, Y.T., Siswanto, N.D., Jiang, B.C.: Optimization of color design for military camouflage in cielab color space. Color Res. Appl. 44(3), 367–380 (2019)

    Article  Google Scholar 

  111. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 2117–2125 (2017)

  112. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference on computer vision, pp. 740–755. Springer (2014)

  113. LIN, W., CHEN, Y.h., GAO, H.s., LIN, L., WANG, J.j.: A method of camouflage evaluation based on texture analysis model of gabor wavelet. Acta Armamentarii 10 (2007)

  114. Liu, J.J., Hou, Q., Cheng, M.M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3917–3926 (2019)

  115. Liu, N., Han, J., Yang, M.H.: Picanet: Learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018)

  116. Liu, Z., Huang, K., Tan, T.: Foreground object detection using top-down information based on EM framework. IEEE Trans. Image Process. 21(9), 4204–4217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  117. Łoza, A., Mihaylova, L., Bull, D., Canagarajah, N.: Structural similarity-based object tracking in multimodality surveillance videos. Mach. Vis. Appl. 20(2), 71–83 (2009)

    Article  Google Scholar 

  118. Lu, H., Wang, X., Liu, S., Shi, M., Guo, A.: The possible mechanism underlying visual anti-camouflage: a model and its real-time simulation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 29(3), 314–318 (1999)

    Article  Google Scholar 

  119. Ma, Y.F., Zhang, H.J.: Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the eleventh ACM international conference on Multimedia, pp. 374–381 (2003)

  120. Malathi, T., Bhuyan, K.M.: Foreground object detection under camouflage using multiple camera-based codebooks. In: Annual IEEE India Conference (INDICON), pp. 1–6 (2013)

  121. Mancas, M., Couvreur, L., Gosselin, B., Macq, B.: Computational attention for event detection. In: ICCV (2007)

  122. Mancas, M., Gosselin, B., Macq, B.: Perceptual image representation. EURASIP J. Image Video Process. 2007, 1–9 (2007)

    Article  Google Scholar 

  123. Mangale, S., Khambete, M.: Camouflaged target detection and tracking using thermal infrared and visible spectrum imaging. In: The International Symposium on Intelligent Systems Technologies and Applications, pp. 193–207. Springer (2016)

  124. Marouani, S., Huertas, A., Medioni, G.: Model-based aircraft recognition in perspective aerial imagery. In: Proceedings of International Symposium on Computer Vision, pp. 371–376 (1995)

  125. McKee, S.P., Watamaniuk, S.N., Harris, J.M., Smallman, H.S., Taylor, D.G.: Is stereopsis effective in breaking camouflage for moving targets? Vis. Res. 37(15), 2047–2055 (1997)

    Article  Google Scholar 

  126. Mondal, A., Ghosh, S., Ghosh, A.: Partially camouflaged object tracking using modified probabilistic neural network and fuzzy energy based active contour. Int. J. Comput. Vis. 122(1), 1–33 (2016)

    MathSciNet  Google Scholar 

  127. Morin, S.A., Shepherd, R.F., Kwok, S.W., Stokes, A.A., Nemiroski, A., Whitesides, G.M.: Camouflage and display for soft machines. Science 337(6096), 828–832 (2012)

    Article  Google Scholar 

  128. Müller, T., Müller, M.: Computer-aided camouflage assessment in real time. In: Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XVIII, vol. 6543, pp. 64–74. International Society for Optics and Photonics (2007)

  129. NATO-RTO, S..: Search and target acquisition. In: RTO Meeting Proceedings 45. NATO RTO, Neuilly-sur-Seine (1999)

  130. Neider, M.B., Zelinsky, G.J.: Searching for camouflaged targets: Effects of target-background similarity on visual search. Vis. Res. 46(14), 2217–2235 (2006)

    Article  Google Scholar 

  131. Nguyen, T.V., Zhao, Q., Yan, S.: Attentive systems: A survey. Int. J. Comput. Vis. 126(1), 86–110 (2018)

    Article  Google Scholar 

  132. Nyberg, S., Bohman, L.: Assessing camouflage methods using textural features. Opt. Eng. 40(9), 1869–1876 (2001)

    Article  Google Scholar 

  133. Nyberg, S., Bohman, L.: Assessing camouflage using textural features. In: Targets and Backgrounds VII: Characterization and Representation, vol. 4370, pp. 60–71. International Society for Optics and Photonics (2001)

  134. Owens, A., Barnes, C., Flint, A., Singh, H., Freeman, W.: Camouflaging an object from many viewpoints. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2782–2789 (2014)

  135. Pan, Y., Chen, Y., Fu, Q., Zhang, P., Xu, X.: Study on the camouflaged target detection method based on 3D convexity. Modern Appl. Sci. 5(4), 152–156 (2011)

    Article  Google Scholar 

  136. Patil, K.V., Pawar, K.N.: Method for improving camouflage image quality using texture analysis. Int. J. Comput. Appl. 180(8), 6–8 (2017)

    Google Scholar 

  137. Pezeshkian, N., Neff, J.D.: Adaptive electronic camouflage using texture synthesis. In: Unmanned Systems Technology XIV, vol. 8387, pp. 838707–838718. International Society for Optics and Photonics (2012)

  138. Prasetyo, Y.: Utilization of color similarity index for evaluating existing military camouflage designs. In: 10th Annual International Conference on Industrial Engineering and Operations Management (2020)

  139. Prasetyo, Y.T.: Evaluating existing china military camouflage designs using camouflage similarity index (CSI). In: Proceedings of 5th International Conference on Industrial and Business Engineering, pp. 321–325 (2019)

  140. Puzzo, D.P., Arsenault, A.C., Manners, I., Ozin, G.A.: Electroactive inverse opal: a single material for all colors. Angew. Chem. 121(5), 961–965 (2009)

    Article  Google Scholar 

  141. Qin, C., Chang, C.C., Chiu, Y.P.: A novel joint data-hiding and compression scheme based on smvq and image inpainting. IEEE Trans. Image Process. 23(3), 969–978 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  142. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: Basnet: Boundary-aware salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7479–7489 (2019)

  143. Ramsey, S., Mayo, T., Howells, C.A., Shabaev, A., Lambrakos, S.G.: Modeling apparent camouflage-pattern color using segment-weighted spectra. J. Electromagn. Waves Appl. 33(5), 541–556 (2019)

    Article  Google Scholar 

  144. Rao, C., Reddy, A., Rao, C.: Camouflaged object detection for machine vision applications. Int. J. Speech Technol. 23, 327–335 (2020)

    Article  Google Scholar 

  145. Rapantzikos, K., Tsapatsoulis, N., Avrithis, Y., Kollias, S.: Spatiotemporal saliency for video classification. Signal Process. Image Commun. 24(7), 557–571 (2009)

    Article  Google Scholar 

  146. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv (2018)

  147. Reichardt, W., Egelhaaf, M., Guo, A.K.: Processing of figure and background motion in the visual system of the fly. Biol. Cybern. 61(5), 327–345 (1989)

    Article  Google Scholar 

  148. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  149. Ren, Z., Yu, Z., Yang, X., Liu, M.Y., Lee, Y.J., Schwing, A.G., Kautz, J.: Instance-aware, context-focused, and memory-efficient weakly supervised object detection. In: CVPR, pp. 10598–10607 (2020)

  150. Reynolds, C.: Interactive evolution of camouflage. Artif. Life 17(2), 123–136 (2011)

    Article  Google Scholar 

  151. Robert, M.H., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Google Scholar 

  152. Ronconi, P., Jacobs, P., Mauer, E., Huebner, G., Dotoli, P., Peak, J., Hepfinger, L., Balma, R., Christopher, G., Fleuriet, J., et al.: Guidelines for camouflage assessment using observers. NATO-RTO (2007)

  153. Rong, X., Jia, Q., Xu, W., Lv, X., Hu, J.: Camouflage effect evaluation of pattern painting based on moving object detection. In: 2016 International Conference on Energy, Power and Electrical Engineering. Atlantis Press (2016)

  154. Rosenholtz, R., Li, Y., Mansfield, J., Jin, Z.: Feature congestion: a measure of display clutter. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 761–770 (2005)

  155. Rosenholtz, R., Li, Y., Nakano, L.: Measuring visual clutter. J. Vis. 7(2), 17–17 (2007)

    Article  Google Scholar 

  156. Rotman, S.R., Hsu, D., Cohen, A., Shamay, D., Kowalczyk, M.L.: Textural metrics for clutter affecting human target acquisition. Infrared Phys. Technol. 37(6), 667–674 (1996)

    Article  Google Scholar 

  157. Schwegmann, A.: Camouflage evaluation by bio-inspired local conspicuity quantification. In: Target and Background Signatures IV, vol. 10794, p. 107940H. International Society for Optics and Photonics (2018)

  158. Sengottuvelan, P., Wahi, A., Shanmugam, A.: Performance of decamouflaging through exploratory image analysis. In: 1st IEEE International Conference on Emerging Trends in Engineering and Technology, ICETET’08, pp. 6–10 (2008)

  159. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 15–15 (2009)

    Article  Google Scholar 

  160. Shi, H., Yang, Y.: A computational model of visual attention based on saliency maps. Appl. Math. Comput. 188(2), 1671–1677 (2007)

    MathSciNet  MATH  Google Scholar 

  161. Singh, S.K., Dhawale, C.A., Misra, S.: Survey of object detection methods in camouflaged image. IERI Procedia 4, 351–357 (2013)

    Article  Google Scholar 

  162. Singh, V.K., Maji, S., Mukerjee, A.: Confidence based updation of motion conspicuity in dynamic scenes. In: The 3rd Canadian Conference on Computer and Robot Vision (CRV’06), pp. 13–13. IEEE (2006)

  163. Skurowski, P., Abdulameer, H., Błaszczyk, J., Depta, T., Kornacki, A., Kozieł, P.: Animal camouflage analysis: Chameleon database. Unpublished Manuscript (2018)

  164. Smeulders, A.W., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: An experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2013)

    Google Scholar 

  165. Song, G., Shunqing, T.: Method for spectral pattern recognition of color camouflage. Opt. Eng. 36(6), 1779–1781 (1997)

    Article  Google Scholar 

  166. Song, L., Geng, W.: A new camouflage texture evaluation method based on WSSIM and nature image features. In: 2010 International Conference on Multimedia Technology, pp. 1–4. IEEE (2010)

  167. Stevens, M., Merilaita, S.: Animal camouflage: current issues and new perspectives. Philos. Trans. R. Soc. B Biol. Sci. 364(1516), 423–427 (2009)

    Article  Google Scholar 

  168. Stevens, M., Merilaita, S.: Animal camouflage. Animal Camouflage: Mechanisms and Function. Cambridge University Press, Cambridge pp. 1–17 (2011)

  169. Stuart-Fox, D., Moussalli, A., Whiting, M.J.: Predator-specific camouflage in chameleons. Biol. Lett. 4(4), 326–329 (2008)

    Article  Google Scholar 

  170. Tang, P., Wang, X., Bai, S., Shen, W., Bai, X., Liu, W., Yuille, A.: Pcl: Proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 176–191 (2018)

    Article  Google Scholar 

  171. Tankus, A., Yeshurun, Y.: Detection of regions of interest and camouflage breaking by direct convexity estimation. In: Proceedings of IEEE Workshop on Visual Surveillance, pp. 42–48 (1998)

  172. Tankus, A., Yeshurun, Y.: Convexity-based camouflage breaking. In: Proceedings of 15th International Conference on Pattern Recognition, vol. 1, pp. 454–457 (2000)

  173. Tankus, A., Yeshurun, Y.: A model for visual camouflage breaking. In: Biologically Motivated Computer Vision, pp. 139–149 (2000)

  174. Tankus, A., Yeshurun, Y.: Convexity-based visual camouflage breaking. Comput. Vis. Image Underst. 82(3), 208–237 (2001)

    Article  MATH  Google Scholar 

  175. Tankus, A., Yeshurun, Y.: Computer vision, camouflage breaking and countershading. Philos. Trans. R.Soc. Lond.B Biol. Sci. 364(1516), 529–536 (2009)

    Article  Google Scholar 

  176. Ternovskiy, I.V., Jannson, T.P.: Mapping-singularities-based motion estimation. In: Optical Science, Engineering and Instrumentation’97, vol. 3173, pp. 317–321 (1997)

  177. Teyssier, J., Saenko, S.V., Van Der Marel, D., Milinkovitch, M.C.: Photonic crystals cause active colour change in chameleons. Nat. Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  178. Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation. In: ECCV (2020)

  179. Toet, A.: Structural similarity determines search time and detection probability. Infrared Phys. Technol. 53(6), 464–468 (2010)

    Article  Google Scholar 

  180. Toet, A.: Computational versus psychophysical bottom-up image saliency: A comparative evaluation study. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2131–2146 (2011)

    Article  Google Scholar 

  181. Toet, A., Hogervorst, M.A.: Urban camouflage assessment through visual search and computational saliency. Opt. Eng. 52(4), 1–9 (2012)

    Article  Google Scholar 

  182. Toet, A., Hogervorst, M.A.: Review of camouflage assessment techniques. In: Target and Background Signatures VI, vol. 11536, pp. 11536041–115360429. International Society for Optics and Photonics (2020)

  183. Troscianko, J., Skelhorn, J., Stevens, M.: Quantifying camouflage: how to predict detectability from appearance. BMC Evol. Biol. 17(1), 1–13 (2017)

    Article  Google Scholar 

  184. Varma, G., Subramanian, A., Namboodiri, A., Chandraker, M., Jawahar, C.: IDD: A dataset for exploring problems of autonomous navigation in unconstrained environments. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1743–1751. IEEE (2019)

  185. Vigneron, J.P., Pasteels, J.M., Windsor, D.M., Vértesy, Z., Rassart, M., Seldrum, T., Dumont, J., Deparis, O., Lousse, V., Biro, L.P., et al.: Switchable reflector in the panamanian tortoise beetle charidotella egregia (chrysomelidae: Cassidinae). Phys. Rev. E 76(3), 031907 (2007)

    Article  Google Scholar 

  186. Volonakis, T.N., Matthews, O.E., Liggins, E., Baddeley, R.J., Scott-Samuel, N.E., Cuthill, I.C.: Camouflage assessment: Machine and human. Comput. Ind. 99, 173–182 (2018)

    Article  Google Scholar 

  187. Walther, D.: Interactions of visual attention and object recognition: computational modeling, algorithms, and psychophysics. Ph.D. thesis, California Institute of Technology (2006)

  188. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. 19(9), 1395–1407 (2006)

    Article  MATH  Google Scholar 

  189. Wang, G., Chen, X., Liu, S., Wong, C., Chu, S.: Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10(2), 1788–1794 (2016)

    Article  Google Scholar 

  190. Wang, K., Yan, X., Zhang, D., Zhang, L., Lin, L.: Towards human-machine cooperation: Self-supervised sample mining for object detection. In: CVPR, pp. 1605–1613 (2018)

  191. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: Solo: Segmenting objects by locations. In: ECCV (2020)

  192. Wang, X., Zhang, R., Kong, T., Li, L., Shen, C.: Solov2: Dynamic, faster and stronger. arXiv (2020)

  193. Wang, Y., Li, L., Yang, X., Wang, X., Liu, H.: A camouflaged object detection model based on deep learning. In: 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), pp. 150–153 (2020)

  194. Wei-dong, X., Xu-liang, L., Bing, C., Shi-qiang, X.: A model based on texture analysis for the performance evaluation of camouflage screen equipment. Acta Armamentarii 23(3), 329–331 (2002)

    Google Scholar 

  195. Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2019)

  196. Xiao, H., Qu, Z., Lv, M., Jiang, Y., Wang, C., Qin, R.: Fast self-adaptive digital camouflage design method based on deep learning. Applied Sciences 10(15), (2020)

  197. Xiao, X., Ma, L.: Color transfer in correlated color space. In: Proceedings of the 2006 ACM international conference on Virtual reality continuum and its applications, pp. 305–309 (2006)

  198. Xu, D., Shi, Z.: DSIM: a dissimilarity-based image clutter metric for targeting performance. IEEE Trans. Image Process. 22(10), 4108–4122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  199. Xue, F., Wu, F., Wang, J., Hu, Y.: RETRACTED: Camouflage texture design based on its camouflage performance evaluation. Neurocomputing 274, 106–114 (2018)

    Article  Google Scholar 

  200. Xue, F., Xu, S., Luo, Y.T., Jia, W.: Design of digital camouflage by recursive overlapping of pattern templates. Neurocomputing 172, 262–270 (2016)

    Article  Google Scholar 

  201. Xue, F., Yong, C., Xu, S., Dong, H., Luo, Y., Jia, W.: Camouflage performance analysis and evaluation framework based on features fusion. Multimed. Tools. Appl. 75(7), 4065–4082 (2016)

    Article  Google Scholar 

  202. Yan, J., Le, T.N., Nguyen, K.D., Tran, M.T., Do, T.T., Nguyen, T.V.: Mirrornet: Bio-inspired camouflaged object segmentation. arxiv (2020)

  203. Yan, Z., Liang, J., Pan, W., Li, J., Zhang, C.: Weakly-and semi-supervised object detection with expectation-maximization algorithm. arXiv (2017)

  204. Yang, H., Yin, J.: A digital camouflage generation algorithm using color similarity. Int. J. Multimed. Ubiquitous Eng. 10(6), 159–164 (2015)

    Article  Google Scholar 

  205. Yang, H.F., Yin, J.P.: An adaptive digital camouflage scheme using visual perception and k-mean clustering. In: Advanced Materials Research, vol. 834, pp. 1091–1094. Trans Tech Publ (2014)

  206. Yao, H., Liu, X., Tang, Z., Qin, C., Tian, Y.: Adaptive image camouflage using human visual system model. Multimed. Tools Appl. 78(7), 8311–8334 (2019)

    Article  Google Scholar 

  207. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm Comput. Surv. (CSUR) 38(4), 13–85 (2006)

    Article  Google Scholar 

  208. Yuan, X., Lv, X., Li, L., Wang, X., Zhang, Z.: Image feature extraction based on the camouflage effectiveness evaluation. In: AIP Conference Proceedings, vol. 1955, pp. 0401831–0401836. AIP Publishing LLC (2018)

  209. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: A bayesian framework for saliency using natural statistics. J. Vis. 8(7), 32–32 (2008)

    Article  Google Scholar 

  210. Zhang, W., Wang, H., Hou, D., Yu, N.: Reversible data hiding in encrypted images by reversible image transformation. IEEE Trans. Multimed. 18(8), 1469–1479 (2016)

    Article  Google Scholar 

  211. Zhang, X., Zhu, C., Wang, S., Liu, Y., Ye, M.: A bayesian approach to camouflaged moving object detection. IEEE Trans. Circuits Syst. Video Technol. 27(9), 2001–2013 (2016)

    Article  Google Scholar 

  212. Zhang, X., Zhu, C., Wang, S., Liu, Y., Ye, M.: A bayesian approach to camouflaged moving object detection. IEEE Trans. Circuits Syst. Video Technol. 27(9), 2001–2013 (2017)

    Article  Google Scholar 

  213. Zhang, Y., Foroosh, H., David, P., Gong, B.: Camou: Learning physical vehicle camouflages to adversarially attack detectors in the wild. In: International Conference on Learning Representations (2018)

  214. Zhang, Y., Xue, S.Q., Jiang, X.J., Mu, J.Y., Yi, Y.: The spatial color mixing model of digital camouflage pattern. Defence Technol. 9(3), 157–161 (2013)

    Article  Google Scholar 

  215. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890 (2017)

  216. Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: Egnet: Edge guidance network for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8779–8788 (2019)

  217. Zhao, T., Wu, X.: Pyramid feature attention network for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3085–3094 (2019)

  218. Zhao, Y., Xie, Z., Gu, H., Zhu, C., Gu, Z.: Bio-inspired variable structural color materials. Chem. Soc. Rev. 41(8), 3297–3317 (2012)

    Article  Google Scholar 

  219. Zheng, Y., Zhang, X., Wang, F., Cao, T., Sun, M., Wang, X.: Detection of people with camouflage pattern via dense deconvolution network. IEEE Signal Process. Lett. 26(1), 29–33 (2018)

    Article  Google Scholar 

  220. Zhou, L., Wei, W.: DIC: deep image clustering for unsupervised image segmentation. IEEE Access. 8, 34481–34491 (2020)

    Article  Google Scholar 

  221. Zhou, P.C., Liu, C.C.: Camouflaged target separation by spectral-polarimetric imagery fusion with shearlet transform and clustering segmentation. In: ISPDI 2013-5th International Symposium on Photoelectronic Detection and Imaging (2013)

  222. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 3–11. Springer (2018)

  223. Zhu, H.H., Du, S.D.: Camouflage assessment based on wavelet texture characteristics. Comput. Eng. 34(16), 227–229 (2008)

    Google Scholar 

  224. Zylinski, S., Darmaillacq, A.S., Shashar, N.: Visual interpolation for contour completion by the european cuttlefish (sepia officinalis) and its use in dynamic camouflage. Proc. R. Soc. B Biol. Sci. 279(1737), 2386–2390 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajoy Mondal.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Y. Kong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A. Camouflage design, assessment and breaking techniques: a survey. Multimedia Systems 28, 141–160 (2022). https://doi.org/10.1007/s00530-021-00813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00813-6

Keywords

Navigation