Skip to main content
Log in

Relationship Between Tensile Strength and Durability of Oxide Thermoelectric Modules

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The durability of thermoelectric modules is investigated by conducting material property tests over a range of module preparation pressures. Tensile strength and bending strength tests are carried out at room temperature for devices comprising one-piece oxide thermoelectric elements (p-type Ca2.7Bi0.3Co4O9 and n-type CaMn0.98Mo0.02O3), silver paste, and silver sheet between two sheets of alumina substrate. Tensile strength was found to increase with device preparation pressure, reaching approximately 20 MPa for p-type devices at a preparation pressure of 6.36 MPa. The tensile strength of the n-type devices was less than 10 MPa. Module performance was tested under heat cycling and vibration by measuring thermoelectric generation properties including internal resistance, open-circuit voltage, and output power of the modules. Modules prepared at pressures above 3.19 MPa were found to have no degradation of thermoelectric properties during the vibration tests. Furthermore, no degradation during heat cycling was observed for modules prepared at 6.36 MPa. Continuous power generation tests at 973 K in air were performed for the modules prepared at 0.116 MPa and 6.36 MPa and no degradation was observed over 2400 h. For the module prepared at 6.36 MPa, no degradation was observed over 10000 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C. Forman, I.K. Muritala, R. Pardemann, and B. Meyer, Renew. Sustain. Energy Rev. 57, 1568 (2016).

    Article  Google Scholar 

  2. G.J. Snyder, and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  3. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  4. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  CAS  Google Scholar 

  5. K. Bartholome, B. Balke, D. Zuckermann, M. Kohne, M. Muller, K. Tarantik, and J. Koenig, J. Electron. Mater. 43, 1775 (2014).

    Article  CAS  Google Scholar 

  6. J.R. Salvador, J. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. Koenig, and R. Maloney, Phys. Chem. Chem. Phys. 16, 12510 (2014).

    Article  CAS  Google Scholar 

  7. G. Skomedal, L. Holmgren, H. Middleton, I.S. Eremin, G.N. Isachenko, M. Jaegle, K. Tarantik, N. Vlacho, M. Manoli, and T. Kyratsi, Energy Conv. Manag. 110, 13 (2016).

    Article  CAS  Google Scholar 

  8. P. Wang, J.E. Li, B.L. Wang, T. Shimada, H. Hirakata, and C. Zhang, J. Power Sources 437, 226861 (2019).

    Article  CAS  Google Scholar 

  9. M.Y. Lee, J.H. Seo, H.S. Lee, and K.S. Garud, Symmetry 12, 786 (2020).

    Article  CAS  Google Scholar 

  10. J.L. Gao, Q.G. Du, X.D. Zhang, and X.Q. Jiang, J. Electron. Mater. 40, 884 (2011).

    Article  CAS  Google Scholar 

  11. J.R. Salvador, J.Y. Cho, Z.X. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. Konig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, and G.P. Meisner, J. Electron. Mater. 42, 1389 (2013).

    Article  CAS  Google Scholar 

  12. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. 39, L1127 (2000).

    Article  CAS  Google Scholar 

  13. S. Urata, R. Funahashi, T. Mihara, A. Kosuga, S. Sodeoka, and T. Tanaka, Int. J. Appl. Ceram. Tech. 4, 535 (2007).

    Article  CAS  Google Scholar 

  14. R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami, Appl. Phys. Lett. 85, 1036 (2004).

    Article  CAS  Google Scholar 

  15. Road vehicles: Environmental conditions and testing for electrical and electronic equipment, International Organization for Standardization, https://www.iso.org/standard/ 58049.html.

Download references

Acknowledgments

This work was supported financially by grant from the International Joint Research Program for Innovative Energy Technology funded by Ministry of Economy, Trade and Industry and Thermal Management Materials and Technology Research Association (TherMAT). We thank Edanz Group (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Funahashi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funahashi, R., Matsumura, Y., Urata, T. et al. Relationship Between Tensile Strength and Durability of Oxide Thermoelectric Modules. J. Electron. Mater. 50, 3996–4005 (2021). https://doi.org/10.1007/s11664-021-08934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08934-4

Keywords

Navigation