Skip to main content
Log in

Green Synthesis of Dense Rock MgO Nanoparticles Using Carica Papaya Leaf Extract and its Shape Dependent Antimicrobial Activity: Joint Experimental and DFT Investigation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present work reports the green synthesis of MgO nanoparticles (G-MgO NPs) using Carica papaya leaf extract, and a shape dependent density functional investigation for MgO NPs on their antimicrobial activity, for the first time. The synthesized G-MgO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDS). These methods confirmed the presence of the synthesized G-MgO nanoparticles in the range of 20–100 nm with the shape of dense rock. The larger particles of G-MgO NPs resulted from the agglomeration of smaller nanoparticles. The G-MgO NPs are observed to show reasonable antimicrobial activity against the microorganism Bacillus subtilis. A detailed theoretical study under density functional theory (DFT) shows that our synthesized dense rock shaped MgO nanoparticles are better candidate for biological interactions in comparison to the convensional spherical counterpart. The results show that the green synthesis of magnesium oxide nanoparticles using Carica papaya leaf extract can be an alternative to chemical and physical methods with possible biomedicinal applications in addition.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi (2005). Size-dependent optical properties of MgO nanocubes. Angewandte Chemie International Edition 44 (31), 4917–4920.

    Article  CAS  Google Scholar 

  2. A. Fakhri and S. Adami (2014). Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles. Journal of the Taiwan Institute of Chemical Engineers 45 (3), 1001–1006.

    Article  CAS  Google Scholar 

  3. A. B. Patil and B. M. Bhanage (2013). Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen-Schmidt condensation. Catalysis Communications 36, 79–83.

    Article  CAS  Google Scholar 

  4. B. Nagappa and G. T. Chandrappa (2007). Mesoporous nanocrystalline magnesium oxide for environmental remediation. Microporous and Mesoporous Materials 106 (1–3), 212–218.

    Article  CAS  Google Scholar 

  5. R. Al-Gaashani, S. Radiman, Y. Al-Douri, N. Tabet, and A. R. Daud (2012). Investigation of the optical properties of Mg (OH) 2 and MgO nanostructures obtained by microwave-assisted methods. Journal of Alloys and Compounds 521, 71–76.

    Article  CAS  Google Scholar 

  6. F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. Journal of Physics and Chemistry of Solids 71 (12), 1623–1628.

    Article  CAS  Google Scholar 

  7. P. Ouraipryvan, T. Sreethawong, and S. Chavadej (2009). Synthesis of crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol–gel process. Mater. Lett. 63, 1862–1865.

    Article  CAS  Google Scholar 

  8. W. Wang, X. Qiao, J. Chen, and H. Li (2007). Facile synthesis of magnesium oxide nanoplates via chemical precipitation. Materials Letters 61 (14–15), 3218–3220.

    Article  CAS  Google Scholar 

  9. R. Atchudan, S. Perumal, D. Karthikeyan, A. Pandurangan, and Y. R. Lee (2015). Synthesis and characterization of graphitic mesoporous carbon using metalemetal oxide by chemical vapor deposition method. Microporous and Mesoporous Materials 215, 123–132.

    Article  CAS  Google Scholar 

  10. K. D. Bhatte, D. N. Sawant, K. M. Deshmukh, and B. M. Bhanage (2012). Additive free microwave assisted synthesis of nanocrystalline Mg (OH) 2 and MgO. Particuology 10 (3), 384–387.

    Article  CAS  Google Scholar 

  11. G. Palanisamy and T. Pazhanivel (2017). Green synthesis of MgO nanoparticles for antibacterial activity. Int Res J Eng and Technol 4 (9), 137–141.

    Google Scholar 

  12. H. Tsuji, F. Yagi, H. Hattori, and H. Kita (1994). Self-condensation of n-butyraldehyde over solid base catalysts. Journal of Catalysis 148 (2), 759–770.

    Article  CAS  Google Scholar 

  13. Lu, L., Zhang, L., Zhang, X., Wu, Z., Huan, S., Shen, G. and Yu, R., 2010. A MgO Nanoparticles Composite Matrix‐Based Electrochemical Biosensor for Hydrogen Peroxide with High Sensitivity. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22(4), pp.471–477.

  14. S. Shen, P. S. Chow, F. Chen, and R. B. H. Tan (2007). Submicron particles of SBA-15 modified with MgO as carriers for controlled drug delivery. Chemical and pharmaceutical bulletin 55 (7), 985–991.

    Article  CAS  Google Scholar 

  15. P. Yang and C. M. Lieber (1996). Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273 (5283), 1836–1840.

    Article  CAS  Google Scholar 

  16. P. C. Nagajyothi, P. Muthuraman, T. V. M. Sreekanth, D. H. Kim, and J. Shim (2016). Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian Journal of Chemistry 10, 215–225.

    Article  Google Scholar 

  17. A. K. Mittal, Y. Chisti, and U. C. Banerjee (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances 31 (2), 346–356.

    Article  CAS  Google Scholar 

  18. B. K. Sharma, D. V. Shah, and D. R. Roy (2018). Green synthesis of CuO nanoparticles using Azadirachta indica and its antibacterial activity for medicinal applications. Mater. Res. Express 5, 095033.

    Article  Google Scholar 

  19. V. Srivastava, Y. C. Sharma, and M. Sillanpää (2015). Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceramics International 41 (5), 6702–6709.

    Article  CAS  Google Scholar 

  20. N. J. Sushma, D. Prathyusha, G. Swathi, T. Madhavi, B. D. P. Raju, K. Mallikarjuna, and H. S. Kim (2016). Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Applied Nanoscience 6 (3), 437–444.

    Article  Google Scholar 

  21. Suresh, J., Yuvak kumar, R., Sundrarajan, M. and Hong, S.I., 2014. Green synthesis of magnesium oxide nanoparticles. In Advanced Materials Research (Vol. 952, pp. 141–144). Trans Tech Publications.

  22. K. Ramanujam and M. Sundrarajan (2014). Antibacterial effects of biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. Journal of photochemistry and photobiology B: biology 141, 296–300.

    Article  CAS  Google Scholar 

  23. V. J. Mello, M. T. R. Gomes, F. O. Lemos, J. L. Delfino, S. P. Andrade, M. T. Lopes, and C. E. Salas (2008). The gastric ulcer protective and healing role of cysteine proteinases from Carica candamarcensis. Phytomedicine 15 (4), 237–244.

    Article  Google Scholar 

  24. Munoz, V., Sauvain, M., Bourdy, G., Callapa, J., Rojas, I., Vargas, L., Tae, A. and Deharo, E., 2000. The search for natural bioactive compounds through a multidisciplinary approach in Bolivia. Part II. Antimalarial activity of some plants used by Mosetene indians. Journal of ethnopharmacology, 69(2), pp.139–155.

  25. D. S. Seigler, G. F. Pauli, A. Nahrstedt, and R. Leen (2002). Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochemistry 60 (8), 873–882.

    Article  CAS  Google Scholar 

  26. Mondal Roy, S. and Roy, D. R. 2019. Modeling of Bio-Activity and Toxicity in Light of NA Bases Interaction, Scholars' Press, Latvia: European Union.

  27. R. G. Parr and W. Yang, Density functional Theory of Atoms and Molecules (Oxford University Press, New York, USA, 1989).

    Google Scholar 

  28. Frisch, M.J. et al., GAUSSIAN 09, Revision D.01; Gaussian, Inc., Pittsburgh PA, USA, 2009.

  29. S. K. Moorthy, C. H. Ashok, K. V. Rao, and C. Viswanathan (2015). Synthesis and characterization of MgO nanoparticles by Neem leaves through green method. Materials Today: Proceedings 2 (9), 4360–4368.

    Google Scholar 

  30. Fadare, O.A., Durosinmi, O.M., Fadare, R., Izevbekhai, O.U., Awonyemi, I.O. and Obafemi, C.A., 2015. ATR-FTIR and HPLC spectroscopic studies and evaluation of mineral content of Carica papaya leaves and flowers.

  31. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International journal of nanomedicine 7, 6003.

    Article  CAS  Google Scholar 

  32. F. Al-Hazmi, F. Alnowaiser, A. A. Al-Ghamdi, A. A. Al-Ghamdi, M. M. Aly, R. M. Al-Tuwirqi, and F. El-Tantawy (2012). A new large–scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices and Microstructures 52 (2), 200–209.

    Article  CAS  Google Scholar 

  33. B. Vatsha, P. Tetyana, P. M. Shumbula, J. C. Ngila, L. M. Sikhwivhilu, and R. M. Moutloali (2013). Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg (OH) 2 and MgO nanoparticles. Journal of Biomaterials and Nanobiotechnology 4 (04), 365.

    Article  Google Scholar 

  34. Soma Prabha A. and Praba karan V. 2017 Green synthesis of magnesium oxide as nanoparticle synthesis from plant extract and its biological activity. Soma Prabha A and Praba karan V International Journal of Current Advanced Research Vol 6, Issue 09, pp 5826-5832.

  35. T. Sobana Premlatha and M. Preethika (2018). Synthesis and characterisation of magnesium oxide nanoparticles using ocimum sanctum and its application. World Journal of Pharmaceutical Research 7 (7), 285–294.

    Google Scholar 

  36. Chattaraj, P. K. and Roy, D. R. 2007. Update 1 of: Electrophilicity index. Chem. Rev., 107, pp.PR46-PR74.

  37. P. K. Chattaraj, U. Sarkar, D. R. Roy, M. Elango, R. Parthasarathi, and V. Subramanian (2006). Is electrophilicity a kinetic or a thermodynamic concept? Ind. J. Chem. A 45A, 1099–1112.

    CAS  Google Scholar 

Download references

Acknowledgements

DRR is thankful to the SERB, New Delhi, Govt. of India for financial support (Grant No. CRG/2020/002634). BKS is thankful for her UGC-RGNF fellowship (RGNF-2017-18-SC-GUJ-35487).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sutapa Mondal Roy or Debesh R. Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.K., Mehta, B.R., Chaudhari, V.P. et al. Green Synthesis of Dense Rock MgO Nanoparticles Using Carica Papaya Leaf Extract and its Shape Dependent Antimicrobial Activity: Joint Experimental and DFT Investigation. J Clust Sci 33, 1667–1675 (2022). https://doi.org/10.1007/s10876-021-02090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02090-9

Keywords

Navigation