Skip to main content
Log in

CTHRC1 promotes growth, migration and invasion of trophoblasts via reciprocal Wnt/β-catenin regulation

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Preeclampsia (PE) is a pregnancy complication that is characterized by high blood pressure and is associated with high maternal and fetal morbidities. At a mechanistic level, PE is characterized by reduced invasion ability of trophoblasts. Collagen triple helix repeat containing-1 (CTHRC1) is a well-known tumor-promoting factor in several malignant tumors, but its role in trophoblasts remains unknown. In this study, we characterized the expression of CTHRC1 in placenta tissue samples from PE pregnancies and from normal pregnancies. We used the trophoblasts cell lines HTR-8/SVneo and JEG-3 to investigate the role of CTHRC1 in cell migration, invasion and proliferation. Western blot, PCR and TOP/FOP luciferase activity assays were used to investigate the molecular mechanisms underlying these cell behaviors. Placenta tissue samples obtained from pregnant women with PE expressed lower levels of CTHRC1 than those of placenta tissues from women with normal pregnancies. Down-regulation of CTHRC1 impaired cell proliferation, migration and invasion of trophoblasts, while CTHRC1 overexpression promoted nuclear translocation of β-catenin, a result that was further confirmed by TOP/FOP luciferase activity assay. Our findings suggest that CTHRC1 promotes migration and invasion of trophoblasts via reciprocal Wnt/β-catenin signaling pathway. Down-regulation of CTHRC1 may be a potential mechanism underpinning the development of preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bokslag A, van Weissenbruch M, Mol BW, de Groot CJM (2016) Preeclampsia; short and long-term consequences for mother and neonate. Early Hum Dev 102:47–50

    Article  PubMed  Google Scholar 

  • Carson DD, Lagow E, Thathiah A, Al-Shami R, Farach-Carson MC, Vernon M, Yuan L, Fritz MA, Lessey B (2002) Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod 8:871–879

    Article  CAS  PubMed  Google Scholar 

  • Chau K, Hennessy A, Makris A (2017) Placental growth factor and pre-eclampsia. J Hum Hypertens 31:782–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez JA, Cavalli Rde C (2016) Preeclampsia: Vascular Pathophysiological Mechanism and the Basis for Early Diagnosis and Treatment. Rev Bras Ginecol Obstet 38:369–372

    Article  PubMed  Google Scholar 

  • Chen G, Wang D, Zhao X, Cao J, Zhao Y, Wang F, Bai J, Luo D, Li L (2017) miR-155-5p modulates malignant behaviors of hepatocellular carcinoma by directly targeting CTHRC1 and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling. Cancer Cell Int 17:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen N, Wang J (2018) Wnt/β-Catenin signaling and obesity. Front Physiol 9:792

    Article  PubMed  PubMed Central  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Qiu Z, Diao Z, Shen L, Xue P, Sun H, Hu Y (2012) MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1. Placenta 33:824–829

    Article  CAS  PubMed  Google Scholar 

  • Dhariwal NK, Lynde GC (2017) Update in the management of patients with preeclampsia. Anesthesiol Clin 35:95–106

    Article  PubMed  Google Scholar 

  • Dildy GA, Belfort MA, Smulian JC (2007) Preeclampsia recurrence and prevention. Semin Perinatol 31:135–141

    Article  PubMed  Google Scholar 

  • El-Sayed AAF (2017) Preeclampsia: A review of the pathogenesis and possible management strategies based on its pathophysiological derangements. Taiwan J Obstet Gynecol 56:597–598

    Article  Google Scholar 

  • Freihen V, Rönsch K, Mastroianni J, Frey P, Rose K, Boerries M, Zeiser R, Busch H, Hecht A (2020) SNAIL1 employs beta-Catenin-LEF1 complexes to control colorectal cancer cell invasion and proliferation. Int J Cancer 146:2229–2242

    Article  CAS  PubMed  Google Scholar 

  • Ganguly SS, Daft PG, Cao J, Meng X, Zhong ZA, Vander Ark A, Meadows A, Madaj Z, Williams B, Li X (2018) Loss of Myeloid-Specific TGF-β Signaling Decreases CTHRC1 to Downregulate bFGF and the Development of H1993-Induced Osteolytic Bone Lesions. Cancers (Basel) 10:463

    Article  CAS  Google Scholar 

  • He W, Zhang H, Wang Y, Zhou Y, Luo Y, Cui Y, Jiang N, Jiang W, Wang H, Xu D, Li S, Wang Z, Chen Y, Sun Y, Zhang Y, Tseng HR, Zou X, Wang L, Ke Z (2018) CTHRC1 induces non-small cell lung cancer (NSCLC) invasion through upregulating MMP-7/MMP-9. BMC Cancer 18:400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hess AP, Hamilton AE, Talbi S, Dosiou C, Nyegaard M, Nayak N, Genbecev-Krtolica O, Mavrogianis P, Ferrer K, Kruessel J, Fazleabas AT, Fisher SJ, Giudice LC (2007) Decidual stromal cell response to paracrine signals from the trophoblast: Amplification of immune and angiogenic modulators. Biol Reprod 76:102–117

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev 62:50–60

    Article  CAS  PubMed  Google Scholar 

  • Li L, Peng W, Zhou Q, Wan JP, Wang XT, Qi HB (2020) LRP6 regulates Rab7-mediated autophagy through the Wnt/β-catenin pathway to modulate trophoblast cell migration and invasion. J Cell Biochem 121:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Li N, Chen L, Liu C, Jiang Y, Rong J (2019) Elevated CTHRC1 expression is an indicator for poor prognosis and lymph node metastasis in cervical squamous cell carcinoma. Hum Pathol 85:235–241

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang Y, Ma C, Wang S, Li N, Wang J, Ma G, Zhang L (2017) Overexpression of CTHRC1 in human melanoma promotes tumorigenesis targeted by miRNA155. Int J Clin Exp Pathol 10:8199–8210

    PubMed  PubMed Central  Google Scholar 

  • Lip SV, van der Graaf AM, Wiegman MJ, Scherjon SA, Boekschoten MV, Plösch T, Faas MM (2017) Experimental preeclampsia in rats affects vascular gene expression patterns. Sci Rep 7:14807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Chen Z, Xiang J, Gu X (2018) MicroRNA-155 acts as a tumor suppressor in colorectal cancer by targeting CTHRC1 in vitro. Oncol Lett 15:5561–5568

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(– Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Zhang L, Ma J, Fei X, Xu K, Lin J (2020) CTHRC1 overexpression promotes ectopic endometrial stromal cell proliferation, migration and invasion via activation of the Wnt/β-catenin pathway. Reprod Biomed Online 20(40):26–32

    Article  CAS  Google Scholar 

  • Ma MZ, Zhuang C, Yang XM, Zhang ZZ, Ma H, Zhang WM, You H, Qin W, Gu J, Yang S, Cao H, Zhang ZG (2014) CTHRC1 acts as a prognostic factor and promotes invasiveness of gastrointestinal stromal tumors by activating Wnt/PCP-Rho signaling. Neoplasia 16:265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik A, Jee B, Gupta SK (2019) Preeclampsia: disease biology and burden, its management strategies with reference to India. Pregnancy Hypertens 15:23–31

    Article  PubMed  Google Scholar 

  • Maynard SE, Karumanchi SA (2011) Angiogenic factors and preeclampsia. Semin Nephrol 31:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt G, Haider S, Haslinger P, Proestling K, Fiala C, Pollheimer J, Knöfler M (2014) Wnt-dependent T-cell factor-4 controls human etravillous trophoblast motility. Endocrinology 155:1908–1920

    Article  PubMed  CAS  Google Scholar 

  • Morton A (2016) Imitators of preeclampsia: A review. Pregnancy Hypertens 6:1–9

    Article  PubMed  Google Scholar 

  • Ni S, Ren F, Xu M, Tan C, Weng W, Huang Z, Sheng W, Huang D (2018) CTHRC1 overexpression predicts poor survival and enhances epithelial-mesenchymal transition in colorectal cancer. Cancer Med 7:5643–5654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusse R, Clevers H (2017) Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999

    Article  CAS  PubMed  Google Scholar 

  • Pollheimer J, Loregger T, Sonderegger S, Saleh L, Bauer S, Bilban M, Czerwenka K, Husslein P, Knofler M (2006) Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol 168:1134–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyagay P, Heroult M, Wang Q, Lehnert W, Belden J, Liaw L, Friesel RE, Lindner V (2005) Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ Res 96:261–268

    Article  CAS  PubMed  Google Scholar 

  • Rahat B, Hamid A, Ahmad Najar R, Bagga R, Kaur J (2014) Epigenetic mechanisms regulate placental c-myc and hTERT in normal and pathological pregnancies; c-myc as a novel fetal DNA epigenetic marker for pre-eclampsia. Mol Hum Reprod 20:1026–1040

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Speer P (2004) Antioxidant therapy to prevent preeclampsia. Semin Nephrol 24:557–564

    Article  PubMed  Google Scholar 

  • Say L, Chou D, Gemmill A, Tunçalp Ö, Moller AB, Daniels J, Gülmezoglu AM, Temmerman M, Alkema L (2014) Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health 2:e323–e333

    Article  PubMed  Google Scholar 

  • Schunk SJ, Floege J, Fliser D, Speer T (2021) WNT-beta-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 17(3):172–184

    Article  CAS  PubMed  Google Scholar 

  • Sonderegger S, Husslein H, Leisser C, Knofler M (2007) Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28 (Suppl A): S97–S102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R (2010) Pre-eclampsia. Lancet 376:631–644

    Article  PubMed  Google Scholar 

  • Taylor RN (1997) Review: immunobiology of preeclampsia. Am J Reprod Immunol 37:79–86

    Article  CAS  PubMed  Google Scholar 

  • Tulac S, Nayak NR, Kao LC, Van Waes M, Huang J, Lobo S, Germeyer A, Lessey BA, Taylor RN, Suchanek E, Giudice LC (2003) Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J Clin Endocrinol Metab 88:3860–3866

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang Z, Zeng X, Wang J, Zhang L, Song W, Shi Y (2018) Wnt/β-catenin signaling pathway in severe preeclampsia. J Mol Histol 49:317–327

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Li Y, Wang JN, Zhao QX, Wen S, Wang SC, Sun T (2020) A Novel Mechanism of Specialized Proresolving Lipid Mediators Mitigating Radicular Pain: The Negative Interaction with NLRP3 Inflammasome. Neurochem Res 45(8):1860–1869

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fan W, Wang F, Lu H, Xing X, Zhang R, Jiang P (2018) CTHRC1 as a novel biomarker in the diagnosis of cervical squamous cell carcinoma. Int J Clin Exp Pathol 11:847–854

    PubMed  PubMed Central  Google Scholar 

  • Yang XM, You HY, Li Q, Ma H, Wang YH, Zhang YL, Zhu L, Nie HZ, Qin WX, Zhang ZG, Li J (2015) CTHRC1 promotes human colorectal cancer cell proliferation and invasiveness by activating Wnt/PCP signaling. Int J Clin Exp Pathol 8:12793–12801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36:1461–1473

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Lu H, Lyu YY, Yang XM, Zhu LY, Yang GD, Jiang PC, Re Y, Song WW, Wang JH, Zhang CC, Gu F, Luo TJ, Wu ZY, Xu CJ (2017) E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway. Sci Rep 7:44744

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Zhou Q, Liu X, Wang C, Liu G (2019) CTHRC1 overexpression promotes cervical carcinoma progression by activating the Wnt/PCP signaling pathway. Oncol Rep 41:1531–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Liu Y (2015) Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 11:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-xia Lu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xing, Bx., Wang, Yh. et al. CTHRC1 promotes growth, migration and invasion of trophoblasts via reciprocal Wnt/β-catenin regulation. J. Cell Commun. Signal. 16, 63–74 (2022). https://doi.org/10.1007/s12079-021-00625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-021-00625-3

Keywords

Navigation