Skip to main content
Log in

Wigner and Wishart ensembles for sparse Vinberg models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Vinberg cones and the ambient vector spaces are important in modern statistics of sparse models. The aim of this paper is to study eigenvalue distributions of Gaussian, Wigner and covariance matrices related to growing Vinberg matrices. For Gaussian or Wigner ensembles, we give an explicit formula for the limiting distribution. For Wishart ensembles defined naturally on Vinberg cones, their limiting Stieltjes transforms, support and atom at 0 are described explicitly in terms of the Lambert–Tsallis functions, which are defined by using the Tsallis q-exponential functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahlfors, L. (1979). Complex analysis, an introduction to the theory of analytic functions of one complex variable. International series in pure and applied mathematics, 3rd ed. New York: McGraw-Hill.

    Google Scholar 

  • Amari, S., Ohara, A. (2011). Geometry of \(q\)-exponential family of probability distributions. Entropy, 13(6), 1170–1185.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, G. W., Guionnet, A., Zeitouni, O. (2010). An introduction to random matrices. London: Cambridge University Press.

    MATH  Google Scholar 

  • Anderson, G. W., Zeitouni, O. (2006). A CLT for a band matrix model. Probability Theory and Related Fields, 134, 283–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Andersson, S. A., Wojnar, G. G. (2004). Wishart distributions on homogeneous cones. Journal of Theoretical Probability, 17, 781–818.

    Article  MathSciNet  MATH  Google Scholar 

  • Bai, Z., Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices. Springer series in statistics, 2nd ed. New York: Springer.

    Google Scholar 

  • Bai, Z., Choi, K., Fujikoshi, Y. (2018). Consistency of AIC and BIC in estimating the number of significant components in high-dimensional principal component analysis. The Annals of Statistics, 46(3), 1050–1076.

    Article  MathSciNet  MATH  Google Scholar 

  • Benaych-Georges, F. (2009). Rectangular random matrices, related convolution. Probability Theory and Related Fields, 144(3), 471–515.

    Article  MathSciNet  MATH  Google Scholar 

  • Bordenave, C. (2019). Lecture notes on random matrix theory. https://www.math.univ-toulouse.fr/~bordenave/IMPA-RMT.pdf

  • Borodin, A. (1999). Biorthogonal ensembles. Nuclear Physics B, 536(3), 704–732.

    Article  MathSciNet  MATH  Google Scholar 

  • Bun, J., Bouchaud, J. P., Potters, M. (2017). Cleaning large correlation matrices: Tools from random matrix theory. Physics Reports, 666, 1–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E., Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.

    Article  MathSciNet  MATH  Google Scholar 

  • Chafaï, D. (2009). Singular values of random matrices, Lecture Notes at Université Paris-Est Marne-la-Vallée. http://djalil.chafai.net/docs/sing.pdf

  • Cheliotis, D. (2018). Triangular random matrices and biorthogonal ensembles. Statistics & Probability Letters, 134, 36–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Claeys, T., Romano, S. (2014). Biorthogonal ensembles with two-particle interactions. Nonlinearity, 27(10), 2419–2443.

    Article  MathSciNet  MATH  Google Scholar 

  • Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., Knuth, D. E. (1996). On the Lambert \(W\) function. Advances in Computational Mathematics, 5(4), 329–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Diaconis, P. (2003). Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bulletin of the American Mathematical Society, 40, 155–178.

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett, R. (2006). Random graph dynamics, Cambridge series in statistical and probabilistic mathematics (Vol. 20). London: Cambridge University Press.

    Book  Google Scholar 

  • Dykema, K., Haagerup, U. (2004). DT-operator and decomposability of Voiculescu’s circular operator. American Journal of Mathematics, 126, 121–189.

    Article  MathSciNet  MATH  Google Scholar 

  • Erdös, L., Yau, H.-T., Yin, J. (2012a). Rigidity of eigenvalues of generalized Wigner matrices. Advances in Mathematics, 229, 1435–1515.

    Article  MathSciNet  MATH  Google Scholar 

  • Erdös, L., Yau, H.-T., Yin, J. (2012b). Bulk universality for generalized Wigner matrices. Probability Theory and Related Fields, 154, 341–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Faraut, J. (2014). Logarithmic potential theory, orthognal polynomials. In P. Graczyk & A. Hassairi (Eds.), Modern methods of multivariate statistics (Vol. 82, pp. 1–67). Paris: Hermann.

    Google Scholar 

  • Forrester, P. J. (2010). Log-gases and random matrices. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Forrester, P. J., Wang, D. (2017). Muttalib–Borodin ensembles in random matrix theory-realisations and correlation functions. Electronic Journal of Probability, 22(54), 1–43.

    MathSciNet  MATH  Google Scholar 

  • Fujikoshi, Y., Sakurai, T. (2016). High-dimensional consistency of rank estimation criteria in multivariate linear model. Journal of Multivariate Analysis, 149, 199–212.

    Article  MathSciNet  MATH  Google Scholar 

  • Girko, V. L. (1990). Theory of random determinants. London: Kluwer.

    Book  Google Scholar 

  • Graczyk, P., Ishi, H. (2014). Riesz measures and Wishart laws associated to quadratic maps. Journal of the Mathematical Society of Japan, 66, 317–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Graczyk, P., Ishi, H., Kołodziejek, B. (2019). Wishart laws and variance function on homogeneous cones. Probability and Mathematical Statistics, 39(2), 337–360.

    Article  MathSciNet  MATH  Google Scholar 

  • Hachem, W., Loubaton, P., Najim, J. (2005). The empirical eigenvalue distribution of a Gram matrix: From independence to stationarity. Markov Processes and Related Fields, 11, 629–648.

    MathSciNet  MATH  Google Scholar 

  • Hachem, W., Loubaton, P., Najim, J. (2006). The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile. Annales de l’I.H.P Probabilités et Statistiques, 42, 649–670.

    MathSciNet  MATH  Google Scholar 

  • Hachem, W., Loubaton, P., Najim, J. (2007). Deterministic equivalents for certain functionals of large random matrices. The Annals of Applied Probability, 17, 875–930.

    Article  MathSciNet  MATH  Google Scholar 

  • Hachem, W., Loubaton, P., Najim, J. (2008). A CLT for information-theoretic statistics of Gram random matrices with a given variance profile. The Annals of Applied Probability, 18, 2071–2130.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., Wainwright, M. (2015). Statistical learning with sparsity: The Lasso and generalizations. London: Chapman and Hall/CRC.

    Book  MATH  Google Scholar 

  • Ishi, H. (2001). Basic relative invariants associated to homogeneous cones and applications. Journal of Lie Theory, 11, 155–171.

    MathSciNet  MATH  Google Scholar 

  • Ishi, H. (2014). Homogeneous cones and their applications to statistics. In P. Graczyk & A. Hassairi (Eds.), Modern methods of multivariate statistics (Vol. 82, pp. 135–154). Paris: Hermann.

    Google Scholar 

  • Ishi, H. (2016). Explicit formula of Koszul–Vinberg characteristic functions for a wide class of regular convex cones. Entropy, 18, 383. https://doi.org/10.3390/e18110383.

    Article  Google Scholar 

  • Johnstone, I. M. (2007). High dimensional statistical inference and random matrices. In International congress of mathematicians (Vol. I, pp. 307–333), Zurich.

  • Lauritzen, S. L. (1996). Graphical models. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Letac, G., Massam, H. (2007). Wishart distributions for decomposable graphs. The Annals of Statistics, 35, 1278–1323.

    Article  MathSciNet  MATH  Google Scholar 

  • Maathuis, M., Drton, M., Lauritzen, S., Wainwright, M. (Eds.). (2018). Handbook of graphical models. London: Chapman and Hall/CRC.

    Google Scholar 

  • Mingo, J. A., Speicher, R. (2017). Free probability and random matrices, fields institute monographs (Vol. 35). New York: Springer.

    Book  MATH  Google Scholar 

  • Muttalib, K. A. (1995). Random matrix models with additional interactions. Journal of Physics A: Mathematical and General, 28(5), L159–L164.

    Article  MathSciNet  Google Scholar 

  • Nakashima, H. (2020). Functional equations of zeta functions associated with homogeneous cones. Tohoku Mathematical Journal, 72, 349–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Nica, A., Shlyyakhtenko, D., Speicher, R. (2002). Operator-valued distribution I. International Mathematics Research Notices, 29, 1509–1538.

    Article  MathSciNet  MATH  Google Scholar 

  • Palka, Bruce P. (1991). An introduction to complex function theory, Undergraduate texts in mathematics. New York: Springer.

    Book  Google Scholar 

  • Paul, D., Aue, A. (2014). Random matrix theory in statistics: A review. Journal of Statistical Planning and Inference, 150, 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Ronald, I. S. (2004). Integers, polynomials, and rings. New York: Springer.

    MATH  Google Scholar 

  • Shlyakhtenko, D. (1996). Random Gaussian band matrices and freeness with amalgamation. International Mathematics Research Notices, 20, 1013–1025.

    Article  MathSciNet  MATH  Google Scholar 

  • Takayama, N., Jiu, L., Kuriki, S., Zhang, Y. (2020). Computation of the expected Euler characteristic for the largest eigenvalue of a real non-central Wishart matrix. Journal of Multivariate Analysis, 179, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Tao, T. (2012). Topics in random matrix theory, Graduate studies in mathematics (Vol. 132). Providence: American Mathematical Society.

    Book  Google Scholar 

  • Vinberg, E. B. (1963). The theory of convex homogeneous cones. Transactions of Moscow Mathematical Society, 12, 340–403.

    MATH  Google Scholar 

  • Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Annals of Mathematics, 62, 548–564.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamasaki, T., Nomura, T. (2015). Realization of homogeneous cones through oriented graphs. Kyushu Journal of Mathematics, 69, 11–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, J., Zheng, S., Bai, Z. (2015). Large sample covariance matrices and high-dimensional data analysis. London: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Zhang, F. D., Ng, H. K. T., Shi, Y. M. (2018). Information geometry on the curved q-exponential family with application to survival data analysis. Physica A: Statistical Mechanics and its Applications, 512, 788–802.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Professor H. Ishi for strong encouragement and invaluable comments on this work. The authors are very grateful to Professor J. Najim for significant methodological and bibliographical indications for this work and to Professor C. Bordenave for discussions on Theorem 3. The authors thank the Scientific Committee of the CIRM Luminy 2020 Conference “Mathematical Methods of Modern Statistics” (MMMS 2) for giving the possibility to present this work. We thank numerous participants of MMMS 2 for their comments and remarks. We thank the referees and the associated editor for suggestions and corrections that improved significantly the paper. This research was carried out while the first author spent the winter semester of 2018 at Laboratoire de Mathématiques LAREMA under the support of Grant-in-Aid for JSPS fellows (2018J00379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Nakashima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information (PDF 1576 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakashima, H., Graczyk, P. Wigner and Wishart ensembles for sparse Vinberg models. Ann Inst Stat Math 74, 399–433 (2022). https://doi.org/10.1007/s10463-021-00800-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-021-00800-8

Keywords

Navigation