Skip to main content
Log in

Influence of pH on the DSSC Performance of Template Assisted SnO2 Nanostructures

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This paper reports the performance of alizarin based SnO2 dye-sensitized solar cells. A novel template assisted method has been applied for the preparation of tin oxide nanoparticles. For the first time, onion (Allium cepa) was used as a template for the synthesis of tin oxide nanostructures at different pH values. Tin oxide nanostructures were used for the photoanode preparation. A sandwich cell was prepared by using the dye soaked SnO2 film as a photoanode and platinum as a counter electrode. The structural, morphological and optical properties of the nanoparticles were studied using powder X-ray diffraction (XRD), Scanning Electron microscope (SEM), Photoluminescence (PL), Attenuated Total Reflectance (ATR) spectra and UV–visible spectroscopic techniques. Current–voltage (I–V) characteristics have been measured using electrochemical workstation under the presence of solar illumination. Characteristic parameters of the fabricated cell were determined on the basis of the measured I–V curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. O’Regan, M. Gratzel, Nature (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  2. W. Qarony, M.I. Hossain, M.K. Hossain, M.J. Uddin, A. Haque, A.R. Saad, Y.H. Tsang, Results Phys. (2017). https://doi.org/10.1016/j.rinp.2017.09.030

    Article  Google Scholar 

  3. A. Aboulouard, B. Gultekin, M. Can, M. Erol, A. Jouaiti, B. Elhadadi, C. Zafer, S. Demic, J. Mater. Res. Technol (2020). https://doi.org/10.1016/j.jmrt.2019.11.083

    Article  Google Scholar 

  4. R.P.A. Latini, IdaPettiti, Carmen Cavallo. Mater. Chem. Phys. (2017). https://doi.org/10.1016/j.matchemphys.2017.09.030

    Article  Google Scholar 

  5. I. Iwantono, S.K.M. Saad, R. Yuda, M.Y. Abd Rahman, A.A. Umar, Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2018.05.041

    Article  Google Scholar 

  6. A. Rajendran, S. Kandasamy, Mater. Res. Innov. (2019). https://doi.org/10.1080/14328917.2017.1349060

    Article  Google Scholar 

  7. A.N. Kawade, P.K. Bhujbal, A.T. Supekar, H.M. Pathan, K.M. Sonawane, Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164968

    Article  Google Scholar 

  8. T. Krishnamoorthy, M.Z. Tang, A. Verma, A.S. Nair, D. Pliszka, S.G. Mhaisalkar, S. Ramakrishna, J. Mater. Chem. (2012). https://doi.org/10.1039/C1JM15047B

    Article  Google Scholar 

  9. M.K. Hossain, M.F. Pervez, S. Tayyaba, M.J. Uddin, A.A. Mortuza, M.N.H. Mia, M.A. Khan, Efficiency enhancement of natural dye sensitized solar cell by optimizing electrode fabrication parameters. Mater. Sci. 35, 816–823 (2017)

    CAS  Google Scholar 

  10. G. Syrrokostas, A. Siokou, G. Leftheriotis, P. Yianoulis, Sol. Energy Mater. Sol. Cells (2012). https://doi.org/10.1016/j.solmat.2012.04.021

    Article  Google Scholar 

  11. A. Ramachandran, C.O. Sreekala, K.S. Sreelatha, I. Jinchu, IOP Conf. Series: Mater. Sci Eng. (2018). https://doi.org/10.1088/1757-899X/310/1/012151

    Article  Google Scholar 

  12. H.K. Farag, H. Abbas, Z. Phys. Chem. (2018). https://doi.org/10.1515/zpch-2017-0966

    Article  Google Scholar 

  13. J.F. Mohammad, M.A.A. Sooud, S.M. Abed, J. Ovonic Res. 16(2), 107–113 (2020)

    CAS  Google Scholar 

  14. K. Vignesh, R. Hariharan, M. Rajarajan, A. Suganthi, Solid State Sci. (2013). https://doi.org/10.1016/j.solidstatesciences.2013.04.017

    Article  Google Scholar 

  15. R.C. Abruzzi, B.A. Dedavid, M.J.R. Pire, Cerâmica (2015). https://doi.org/10.1590/0366-69132015613591919

    Article  Google Scholar 

  16. S. Tazikeh, A. Akbari, A. Talebi, E. Talebi, Mater. Sci-Poland (2014). https://doi.org/10.2478/s13536-013-0164-y

    Article  Google Scholar 

  17. H. Yang, Y. Hu, A. Tang, S. Jin, G. Qiu, J. Alloy Compds. 363(1–2), 276–279 (2004). https://doi.org/10.1016/S0925-8388(03)00473-0

    Article  CAS  Google Scholar 

  18. A.G. Habte, F.G. Hone, F.B. Dejene, Physica B Condens. Matter. (2020). https://doi.org/10.1016/j.physb.2019.411832

    Article  Google Scholar 

  19. S. Jayapandi, P. Packiyaraj, S. Premkumar, J. Mayandi, K. Anitha, Ionics (2017). https://doi.org/10.1007/s11581-017-2121-y

    Article  Google Scholar 

  20. W. Peng, X. Yang, Z. Chen, J. Zhang, H. Chen, K. Zhang, L. Han, Chemsuschem (2014). https://doi.org/10.1002/cssc.201300644

    Article  PubMed  Google Scholar 

  21. M.A. Gondal, Q.A. Drmosh, T.A. Saleh, Appl. Surface Sci. (2010). https://doi.org/10.1016/j.apsusc.2010.05.027

    Article  Google Scholar 

  22. B. Nandan, B. Venugopal, S. Amirthapandian, B.K. Panigrahi, P. Thangadurai, J. Nanopart. Res. (2013). https://doi.org/10.1007/s11051-013-1999-1

    Article  Google Scholar 

  23. S. Sain, A. Kar, A.P. Swapan, K. Pradhan, CrystEngComm (2014). https://doi.org/10.1039/c3ce42281j

    Article  Google Scholar 

  24. R. Vasanthapriya, N. Neelakandeswari, N. Rajasekaran, K. Uthayarani, M. Chitra, Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.02.118

    Article  Google Scholar 

  25. K.G. Godinho, A. Walsh, G.W. Watson, J. Phys. Chem. C (2009). https://doi.org/10.1021/jp807753t

    Article  Google Scholar 

  26. L.B. Patle, A.L. Chaudhari, Int. J. Sci. Eng. Res. 7(8), 1004–1009 (2016)

    Google Scholar 

  27. C.O. Sreekala, R. Pragash, K.S. Sreelatha, I. Jinchu, 2017 IEEE International Conference on Technological Advancements in Power and Energy (TAP Energy)

  28. T. Qi, QianWang, Yongchao Zhang, DiWang, Renqiang Yang, Wei Zheng. Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2016.09.098

    Article  Google Scholar 

  29. S.A. Arote, V.A. Tabhane, H.M. Pathan, Opt. Mater. (2018). https://doi.org/10.1016/j.optmat.2017.11.023

    Article  Google Scholar 

Download references

Funding

Authors wish to thank DST, India for creating characterisation facilities under DST-FIST(SR/FST/COLLEGE-154/2013 scheme in Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Neelakandeswari.

Ethics declarations

Conflict of interest

All authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanthapriya, R., Neelakandeswari, N., Uthayarani, K. et al. Influence of pH on the DSSC Performance of Template Assisted SnO2 Nanostructures. J Inorg Organomet Polym 31, 4272–4280 (2021). https://doi.org/10.1007/s10904-021-02031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02031-z

Keywords

Navigation