Skip to main content
Log in

Multi-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Precise point positioning (PPP) is receiving increasing interest due to its cost-effectiveness, global coverage and high accuracy. However, its application in the urban environment is still full of challenges due to the satellite tracking sky-view. Thus, we presented a comprehensive positioning model by fusing the multi-GNSS (global navigation satellite system) combination, GNSS/INS (inertial navigation system) tightly coupled integration as well as the ionospheric and tropospheric augmentation in the undifferenced and uncombined PPP. The performance of this model in dual-frequency and single-frequency positioning was assessed with two experiments that denoted as T019 and T023, respectively, and both the experiments were carried out in a real urban environment. Particularly, the experiment T023 was carried out in the Second Ring Road of Wuhan city, which can be regarded as a typical downtown environment. Concerning the regional atmospheric augmentation, observations from 5 reference stations with an inter-station distance of about 40 km were also collected during the experimental time. The comparison between reference stations suggested that the regional tropospheric model had a precision of better than 0.6 cm in terms of zenith tropospheric delay, while the regional ionospheric model had a precision of around 0.5 total electron content unit in terms of Vertical Total Electron Content. It can be concluded that the GPS-only PPP can be improved significantly for urban vehicle navigation with these techniques, i.e., the multi-GNSS, INS tightly coupled integration and the atmospheric augmentation, through the positioning analysis, while INS tightly coupled integration makes the most contributions under the downtown environment, and the improvement of the regional atmospheric augmentation in single-frequency PPP is more significant since that single frequency is more sensitive to the ionospheric delay. In addition, it is proved that the regional atmospheric augmentation accelerates positioning convergence. The 3D positioning root-mean-square (RMS) with the comprehensive positioning model for dual frequency are 0.22 m and 0.77 m for T019 and T023, respectively. Concerning single-frequency PPP, the 3D RMS is 0.45 m and 1.17 m for T019 and T023, respectively. Moreover, taking the lane-level navigation under the downtown environment of T023 into consideration, we further presented the cumulative frequency of the horizontal positioning error less than 1 m, i.e., \(P\left( {\sqrt {{\text{d}}N^{2} + {\text{d}}E^{2} } < 1\;{\text{m}}} \right)\), and the best solution can be found with PPP by fusing all the techniques, in which \(P\left( {\sqrt {{\text{d}}N^{2} + {\text{d}}E^{2} } < 1\;{\text{m}}} \right)\) is 99.0% and 93.2% for dual frequency and single frequency, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Angrisano A, Gaglione S, Gioia C (2013) Performance assessment of GPS/GLONASS single point positioning in an urban environment. Acta Geod Geoph 48(2):149–161

    Article  Google Scholar 

  • Banville S, Collins P, Zhang W et al (2014) Global and regional ionospheric corrections for faster PPP convergence. Navigation 61(2):115–124

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683

    Article  Google Scholar 

  • Böhm J, Möller G, Schindelegger M et al (2015) Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut 19(3):433–441

    Article  Google Scholar 

  • Cai C, Gao Y (2007) Precise point positioning using combined GPS and GLONASS observations. Positioning 1(11):13–22

    Article  Google Scholar 

  • Cai C, Gao Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut 17(2):223–236

    Article  Google Scholar 

  • Cai C, Gao Y, Pan L et al (2015) Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Adv Space Res 56(1):133–143

    Article  Google Scholar 

  • Cox DB Jr (1978) Integration of GPS with inertial navigation systems. Navigation 25(2):236–245

    Article  Google Scholar 

  • Elmezayen A, El-Rabbany A (2019) Precise point positioning using world’s first dual-frequency GPS/GALILEO smartphone. Sensors 19(11):2593

    Article  Google Scholar 

  • Gao Y, Shen X (2002) A new method for carrier-phase-based precise point positioning. Navigation 49(2):109–116

    Article  Google Scholar 

  • Gao Z, Zhang H, Ge M et al (2015) Tightly coupled integration of ionosphere-constrained precise point positioning and inertial navigation systems. Sensors 15(3):5783–5802

    Article  Google Scholar 

  • Gao Z, Zhang H, Ge M et al (2017) Tightly coupled integration of multi-GNSS PPP and MEMS inertial measurement unit data. GPS Solut 21(2):377–391

    Article  Google Scholar 

  • Gu S, Shi C, Lou Y, Feng Y, Ge M (2013) Generalized-positioning for mixed-frequency of mixed-GNSS and its preliminary applications. In: China satellite navigation conference (CSNC) 2013 proceedings, vol 244. Springer, Berlin, Heidelberg, pp 399–428

  • Gu S, Shi C, Lou Y, Liu J (2015a) Ionospheric effects in uncalibrated phase delay estimation and ambiguity-fixed PPP based on raw observable model. J Geod 89(5):447–457. https://doi.org/10.1007/s00190-015-0789-1

    Article  Google Scholar 

  • Gu S, Lou Y, Shi C, Liu J (2015b) BeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable. J Geod 89(10):979–992. https://doi.org/10.1007/s00190-015-0827-z

    Article  Google Scholar 

  • Gu S, Wang Y, Zhao Q, Zheng F, Gong X (2020) BDS-3 differential code bias estimation with undifferenced uncombined model based on triple-frequency observation. J Geod. https://doi.org/10.1007/s00190-020-01364-w

    Article  Google Scholar 

  • Han H, Wang J (2017) Robust GPS/BDS/INS tightly coupled integration with atmospheric constraints for long-range kinematic positioning. GPS Solut 21(3):1285–1299. https://doi.org/10.1007/s10291-017-0612-y

    Article  Google Scholar 

  • Handoko D, Widjadjanti N, Muslim B (2020) PPP method with Kalman filter for detection of shifting GNSS observation points due to the Palu 2018 earthquake, vol 2268, no 1. In: AIP conference proceedings. AIP Publishing LLC, p 050001

  • Jiao G, Song S, Ge Y, Su K, Liu Y (2019) Assessment of BeiDou-3 and multi-GNSS precise point positioning performance. Sensors 19(11):2496. https://doi.org/10.3390/s19112496

    Article  Google Scholar 

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. Gps Solut 5(2):12–28

    Article  Google Scholar 

  • Lagler K, Schindelegger M, Böhm J et al (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073

    Article  Google Scholar 

  • Li X, Dick G, Ge M et al (2014) Real-time GPS sensing of atmospheric water vapor: precise point positioning with orbit, clock, and phase delay corrections. Geophys Res Lett 41(10):3615–3621

    Article  Google Scholar 

  • Li X, Ge M, Dai X et al (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635

    Article  Google Scholar 

  • Lou Y, Zheng F, Gu S et al (2016) Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut 20(4):849–862

    Article  Google Scholar 

  • Lu C, Li X, Nilsson T et al (2015) Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. J Geod 89(9):843–856

    Article  Google Scholar 

  • Luo X, Gu S, Lou Y, Xiong C, Chen B, Jin X (2018) Assessing the performance of GPS precise point positioning under different geomagnetic storm conditions during solar cycle 24. Sensors 18(6):1784. https://doi.org/10.3390/s18061784

    Article  Google Scholar 

  • Rabbou MA, El-Rabbany A (2015a) Integration of multi-constellation GNSS precise point positioning and MEMS-based inertial systems using tightly coupled mechanization. Positioning 6(04):81

    Article  Google Scholar 

  • Rabbou MA, El-Rabbany A (2015b) Tightly coupled integration of GPS precise point positioning and MEMS-based inertial systems. GPS Solut 19(4):601–609

    Article  Google Scholar 

  • Schönemann E, Becker M, Springer T (2011) A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J Geod Sci 1(3):204–214

    Google Scholar 

  • Shi C, Gu S, Lou Y et al (2012) An improved approach to model ionospheric delays for single-frequency precise point positioning. Adv Space Res 49(12):1698–1708

    Article  Google Scholar 

  • Shi C, Guo S, Gu S, Yang X, Gong X, Deng Z et al (2018) Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity. J Geod 34(6):647–714

    Google Scholar 

  • Shin EH (2005) Estimation techniques for low-cost inertial navigation. UCGE report, p 20219

  • Weiss JD, Kee DS (1995) A direct performance comparison between loosely coupled and tightly coupled GPS/INS integration techniques. In: Proceedings of the 51st annual meeting of the institute of navigation

  • Wright TJ, Houlié N, Hildyard M et al (2012) Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: the 2011 Tohoku-Oki (Japan) earthquake. Geophys Res Lett 39(12):12302

    Article  Google Scholar 

  • Yao Y, Yu C, Hu Y (2014) A new method to accelerate PPP convergence time by using a global zenith troposphere delay estimate model. J Navig 67(5):899–910

    Article  Google Scholar 

  • Zhang B, Teunissen PJG, Odijk D (2011) A novel un-differenced PPP-RTK concept. J Navig 64(S1):S180–S191

    Article  Google Scholar 

  • Zhang B, Chen Y, Yuan Y (2019) PPP-RTK based on undifferenced and uncombined observations: theoretical and practical aspects. J Geod 93(7):1011–1024

    Article  Google Scholar 

  • Zhao Q, Wang YT, Gu S et al (2018) Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing. J Geod 93:1–16

    Google Scholar 

  • Zheng F et al (2018) Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. J Geod 92(5):545–560

    Article  Google Scholar 

  • Zhou P, Wang J, Nie Z et al (2020) Estimation and representation of regional atmospheric corrections for augmenting real-time single-frequency PPP. GPS Solut 24(1):7

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC et al (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the National Key Research and Development Plan (2016YFB0501802). The authors thank the Nav. Group of Wuhan University under Dr. Xiaoji Niu for providing the experiment data and the IGS centers for providing the precise GNSS products for this study.

Author information

Authors and Affiliations

Authors

Contributions

Author SG and YL designed the research; SG, WF and CD performed the research; FZ and YW provided the region atmosphere augmentation products and the corresponding evaluation; SG, WF and CD, QZ and XN analyzed the result; SG, WF and CD drafted the paper. All authors discussed, commented on and reviewed the manuscript.

Corresponding author

Correspondence to Yidong Lou.

Appendix

Appendix

Here, we presented the details concerning the PPP/INS observation model. First, a few symbols and notions are defined for future reference: \(\otimes\) and \(\circ\) are the Kronecker product and Schur product, respectively (Rao 1973; Davis et al. 1962); \(\times\) demotes the skew-symmetric matrix of the vector (Shin 2005); and the notions are defined as:

$$ {\varvec{z}}_{{\varvec{s}}} = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} \ldots & 0 \\ \end{array} } \\ \end{array} } \right)^{{\text{T}}} $$
(19)
$$ {\varvec{u}}_{{\varvec{s}}} = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 & 1 \\ \end{array} } & {\begin{array}{*{20}c} \ldots & 1 \\ \end{array} } \\ \end{array} } \right)^{{\text{T}}} $$
(20)
$$ {\varvec{Z}}_{{\varvec{s}}} = \left( {\begin{array}{*{20}c} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ \end{array} } \right) $$
(21)
$$ {\varvec{U}}_{{\varvec{s}}} = \left( {\begin{array}{*{20}c} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \\ \end{array} } \right) $$
(22)
$$ {\text{diag}}\left( {\varvec{a}} \right) = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {a_{1} } \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} \vdots \\ 0 \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {a_{2} } \\ \end{array} } \\ {\begin{array}{*{20}c} \vdots \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} \cdots \\ \cdots \\ \end{array} } \\ {\begin{array}{*{20}c} \ddots \\ \cdots \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} \vdots \\ {a_{n} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right) $$
(23)

thus, \({\varvec{z}}_{{\varvec{s}}}\) is a \(s\) by \(1\) vector with zero entries and \({\varvec{u}}_{{\varvec{s}}}\) is a \(s\) by \(1\) vector with one entries, while \({\varvec{Z}}_{{\varvec{s}}}\) is a \(s\) by \(s\) matrix with zero entries and \({\varvec{U}}_{{\varvec{s}}}\) is a \(s\) by \(s\) identity matrix, and \({\text{diag}}\left( {\varvec{a}} \right)\) denotes the diagonal matrix with the elements of vector \({\varvec{a}} = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {a_{1} } & {a_{2} } \\ \end{array} } & {\begin{array}{*{20}c} \ldots & {a_{n} } \\ \end{array} } \\ \end{array} } \right)^{{\text{T}}}\) on the main diagonal. The dimensions and lengths of such vectors will generally be obvious from context, and the symbols are exactly the same as that of Sect. 2.

According to Eqs. (19)–(23), and denotes the frequency number as \(k\), then the design matrix \({\varvec{H}}_{{{\varvec{PPP}}}}\) is expressed as:

$$ {\varvec{H}}_{{{{\varvec{\updelta}}}{\varvec{x}}_{{\varvec{r}}} }} = \left( {\begin{array}{*{20}c} {{\varvec{u}}_{{2 \cdot {\varvec{k}}}} } \\ 0 \\ \end{array} } \right) \otimes \left( {\begin{array}{*{20}c} {h_{r}^{1} } \\ \vdots \\ {h_{r}^{j} } \\ \end{array} } \right) $$
(24)
$$ {\varvec{H}}_{{t_{r} }} = \left( {\begin{array}{*{20}c} {{\varvec{u}}_{{2 \cdot {\varvec{j}} \cdot {\varvec{k}}}} } \\ {{\varvec{z}}_{{\varvec{j}}} } \\ \end{array} } \right) $$
(25)
$$ {\varvec{H}}_{{{{\varvec{\updelta}}}{\varvec{T}}_{{\varvec{w}}} }} = \left( {\begin{array}{*{20}c} {{\varvec{u}}_{{2 \cdot {\varvec{k}}}} } \\ 0 \\ \end{array} } \right) \otimes \left( {\begin{array}{*{20}c} {\alpha_{r}^{1} } \\ \vdots \\ {\alpha_{r}^{j} } \\ \end{array} } \right) $$
(26)
$$ {\varvec{H}}_{{{\varvec{b}}_{{\varvec{r}}} }} = \left( {\begin{array}{*{20}c} {{\varvec{z}}_{{\varvec{j}}}^{{\mathbf{T}}} } & {{\varvec{u}}_{{\varvec{j}}}^{{\mathbf{T}}} } & {\begin{array}{*{20}c} {{\varvec{z}}_{{\varvec{j}}}^{{\mathbf{T}}} } & {{\varvec{z}}_{{\varvec{j}}}^{{\mathbf{T}}} } & {{\varvec{z}}_{{\varvec{j}}}^{{\mathbf{T}}} } \\ \end{array} } \\ \end{array} } \right)^{{\mathbf{T}}} $$
(27)
$$ {\varvec{H}}_{{{\varvec{N}}_{{\varvec{r}}} }} = \left( {\begin{array}{*{20}c} {{\varvec{Z}}_{j \cdot k} } \\ {{\varvec{U}}_{j \cdot k} } \\ {{\varvec{z}}_{{\varvec{k}}}^{{\varvec{T}}} \otimes {\varvec{Z}}_{{\varvec{j}}} } \\ \end{array} } \right) $$
(28)
$$ {\varvec{H}}_{{{\varvec{a}}_{{\varvec{r}}} }} = \left( {\begin{array}{*{20}c} {\left( {\begin{array}{*{20}c} 1 \\ { - 1} \\ \end{array} } \right) \otimes \left( {\begin{array}{*{20}c} {\frac{40.3}{{f_{1}^{2} }}} \\ {\frac{40.3}{{f_{2}^{2} }}} \\ \end{array} } \right)} \\ 0 \\ \end{array} } \right) \otimes \left( {{\varvec{u}}_{5}^{{\varvec{T}}} \otimes \left( {\begin{array}{*{20}c} {{\varvec{\gamma}}_{r}^{1} } \\ \vdots \\ {{\varvec{\gamma}}_{r}^{j} } \\ \end{array} } \right) \circ \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ \vdots \\ 1 \\ \end{array} } & {\begin{array}{*{20}c} {\hbox{d}L_{r}^{1} } \\ \vdots \\ {\hbox{d}L_{r}^{j} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\hbox{d}B_{r}^{1} } \\ \vdots \\ {\hbox{d}B_{r}^{j} } \\ \end{array} } & {\begin{array}{*{20}c} {\hbox{d}L_{r}^{12} } \\ \vdots \\ {\hbox{d}L_{r}^{j2} } \\ \end{array} } & {\begin{array}{*{20}c} {\hbox{d}B_{r}^{12} } \\ \vdots \\ {\hbox{d}B_{r}^{j2} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right)} \right) $$
(29)
$$ {\varvec{H}}_{{{\varvec{r}}_{{\varvec{r}}} }} = \left( {\begin{array}{*{20}c} {\left( {\begin{array}{*{20}c} 1 \\ { - 1} \\ \end{array} } \right) \otimes \left( {\begin{array}{*{20}c} {\frac{40.3}{{f_{1}^{2} }}} \\ {\frac{40.3}{{f_{1}^{2} }}} \\ \end{array} } \right)} \\ 0 \\ \end{array} } \right) \otimes \left( {{\varvec{u}}_{5}^{{\varvec{T}}} \otimes \left( {\begin{array}{*{20}c} {{\varvec{\gamma}}_{r}^{1} } \\ \vdots \\ {{\varvec{\gamma}}_{r}^{j} } \\ \end{array} } \right) \otimes {\varvec{U}}_{{\varvec{j}}} } \right) $$
(30)

By the way, the Eq. (15) in our previous study Gu et al. (2015a) should be corrected to Eqs. (29) and (30) of this study.

Concerning \({\varvec{N}}^{{\varvec{e}}}\) in Eq. (12) we have:

$$ {\varvec{N}}^{{\varvec{e}}} = \frac{kM}{{r^{3} }}\left( {\begin{array}{*{20}c} { - 1 + \frac{{3x^{2} }}{{r^{2} }}} & {\frac{3xy}{{r^{2} }}} & {\frac{3xz}{{r^{2} }}} \\ {\frac{3xy}{{r^{2} }}} & { - 1 + \frac{{3y^{2} }}{{r^{2} }}} & {\frac{3yz}{{r^{2} }}} \\ {\frac{3xz}{{r^{2} }}} & {\frac{3yz}{{r^{2} }}} & { - 1 + \frac{{3z^{2} }}{{r^{2} }}} \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} {\omega_{e} } & 0 & 0 \\ 0 & {\omega_{e} } & 0 \\ 0 & 0 & 0 \\ \end{array} } \right) $$
(31)

where \(kM\) is the product of the gravitational constant and the mass of the earth; \({\varvec{x}}_{{{\varvec{INS}}}}^{{\varvec{e}}} = \left( {\begin{array}{*{20}c} x & y & z \\ \end{array} } \right)^{{\text{T}}}\); \(r = \sqrt {x^{2} + y^{2} + z^{2} }\); and \(\omega_{e}\) is the earth rotation rate.

Derived from Eqs. (8) to (10), the matrixes in the state Eq. (11) are presented as:

$$ {\mathbf{F}}\varvec{ = }\left( {\begin{array}{*{20}l} 0 \hfill & {\varvec{U}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {{\varvec{N}}^{{\varvec{e}}} } \hfill & { - 2{\varvec{\omega}}_{{{\varvec{ie}}}}^{{\varvec{e}}} \times } \hfill & {{\varvec{C}}_{{\varvec{b}}}^{{\varvec{e}}} {\varvec{f}}_{{\varvec{b}}} \times } \hfill & {{\varvec{C}}_{{\varvec{b}}}^{{\varvec{e}}} } \hfill & 0 \hfill & {{\varvec{C}}_{{\varvec{b}}}^{{\varvec{e}}} {\varvec{diag}}\left( {{\varvec{f}}^{{\varvec{b}}} } \right)} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & { - {\varvec{\omega}}_{{{\varvec{ie}}}}^{{\varvec{e}}} \times } \hfill & 0 \hfill & { - {\varvec{C}}_{{\varvec{b}}}^{{\varvec{e}}} } \hfill & 0 \hfill & { - {\varvec{C}}_{{\varvec{b}}}^{{\varvec{e}}} {\varvec{diag}}\left( {{\varvec{\omega}}_{{{\varvec{ib}}}}^{{\varvec{b}}} } \right)} \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & { - 1/{\varvec{\tau}}_{{{\varvec{ba}}}} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & { - 1/{\varvec{\tau}}_{{{\varvec{bg}}}} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & { - 1/{\varvec{\tau}}_{{{\varvec{sa}}}} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & { - 1/{\varvec{\tau}}_{{{\varvec{sg}}}} } \hfill \\ \end{array} } \right) $$
(32)
$$ {\varvec{G}} = {\text{diag}}\left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\varvec{U}} & {{\varvec{C}}_{{\varvec{b}}}^{{\varvec{e}}} } & { - {\varvec{C}}_{{\varvec{b}}}^{{\varvec{e}}} } \\ \end{array} } & {\begin{array}{*{20}c} {\varvec{U}} & {\varvec{U}} \\ \end{array} } & {\begin{array}{*{20}c} {\varvec{U}} & {\varvec{U}} \\ \end{array} } \\ \end{array} } \right) $$
(33)
$$ {\varvec{w}} = {\text{diag}}\left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\varvec{Z}} & {{\varvec{w}}_{{\varvec{v}}} } & {{\varvec{w}}_{\phi } } \\ \end{array} } & {\begin{array}{*{20}c} {{\varvec{w}}_{{{\varvec{ba}}}} } & {{\varvec{w}}_{{{\varvec{bg}}}} } \\ \end{array} } & {\begin{array}{*{20}c} {{\varvec{w}}_{{{\varvec{sa}}}} } & {{\varvec{w}}_{{{\varvec{sg}}}} } \\ \end{array} } \\ \end{array} } \right) $$
(34)

The design matrixes corresponding to the INS state parameters in Eq. (18) can be expressed as

$$ \varvec{ H}_{\phi } = \left( {\begin{array}{*{20}c} {{\varvec{u}}_{{2 \cdot {\varvec{k}}}} } \\ 0 \\ \end{array} } \right) \otimes \left( {\begin{array}{*{20}c} {h_{r}^{1} } \\ \vdots \\ {h_{r}^{j} } \\ \end{array} } \right) \otimes \left( {\tilde{\varvec{C}}_{{\varvec{b}}}^{{\varvec{e}}} {\varvec{l}}^{{\varvec{b}}} \times } \right) $$
(35)
$$ {\varvec{H}}_{{{{\varvec{\updelta}}}{\varvec{v}}_{{\varvec{r}}} }} = {\varvec{z}}_{3}^{{\text{T}}} \otimes {\varvec{z}}_{{2 \cdot {\varvec{j}} \cdot {\varvec{k}} + {\varvec{j}}}} $$
(36)
$$ \varvec{ H}_{{\varvec{B}}} = \varvec{ H}_{{\varvec{S}}} = {\varvec{z}}_{6}^{{\text{T}}} \otimes {\varvec{z}}_{{2 \cdot {\varvec{j}} \cdot {\varvec{k}} + {\varvec{j}}}} $$
(37)

\(\varvec{ H}_{\phi }\) indicates that the GNSS observations are sensitive to the attitude through the lever-arm correction vector in Eq. (15), while the zero entries in \({\varvec{H}}_{{{{\varvec{\updelta}}}{\varvec{v}}_{{\varvec{r}}} }}\), \({ }{\varvec{H}}_{{\varvec{B}}}\) and \(\varvec{ H}_{{\varvec{S}}}\) indicate that the GNSS observations have no direct relation with the velocity and sensor errors of INS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Dai, C., Fang, W. et al. Multi-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation. J Geod 95, 64 (2021). https://doi.org/10.1007/s00190-021-01514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01514-8

Keywords

Navigation