Skip to main content
Log in

Resolvent Estimates for the Lamé Operator and Failure of Carleman Estimates

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the Lamé operator \(-\Delta ^*\) and study resolvent estimate, uniform Sobolev estimate, and Carleman estimate for \(-\Delta ^*\). First, we obtain sharp \(L^p\)\(L^q\) resolvent estimates for \(-\Delta ^*\) for admissible pq. This extends the particular case \(q=\frac{p}{p-1}\) due to Barceló et al. [4] and Cossetti [8]. Secondly, we show failure of uniform Sobolev estimate and Carleman estimate for \(-\Delta ^*\). For this purpose we directly analyze the Fourier multiplier of the resolvent. This allows us to prove not only the upper bound but also the lower bound on the resolvent, so we get the sharp \(L^p\)\(L^q\) bounds for the resolvent of \(-\Delta ^*\). Strikingly, the relevant uniform Sobolev and Carleman estimates turn out to be false for the Lamé operator \(-\Delta ^*\) even though the uniform resolvent estimates for \(-\Delta ^*\) are valid for certain range of pq. This contrasts with the classical result regarding the Laplacian \(\Delta \) due to Kenig, Ruiz, and Sogge [23] in which the uniform resolvent estimate plays a crucial role in proving the uniform Sobolev and Carleman estimates for \(\Delta \). We also describe locations of the \(L^q\)-eigenvalues of \(-\Delta ^*+V\) with complex potential V by making use of the sharp \(L^p\)\(L^q\) resolvent estimates for \(-\Delta ^*\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Consequently, the line segments \([A,A']\) and \([B,B']\) are contained in the lines \(x-y=\frac{2}{d}\) and \(x-y=\frac{2}{d+1}\), respectively.

  2. The number \(p_*\) relates to the range of the oscillatory integral of Carleson–Sjölin type with elliptic phase ( [15, Theorem 1.2]). Being combined with Tao’s bilinear restriction theorem ( [37]) and the bilinear argument in [7, 27], this is one of main ingredients for the results in [25, Theorem 1.4]. The point \(P_\circ \) is the intersection of \({\mathcal {L}}\) and the line connecting \(P_*\) and \((\frac{1}{2}, \frac{d}{2(d+2)})\); see [25, Sects. 2 and 3] for details. If \(d=2\) then \(P_*=P_\circ =D=(1/4,1/4)\).

References

  1. Alessandrini, G., Morassi, A.: Strong unique continuation for the Lamé system of elasticity. Commun. Partial Differ. Equ. 26, 1787–1810 (2001)

    Article  Google Scholar 

  2. Ang, D.D., Ikehata, M., Trong, D.D., Yamamoto, M.: Unique continuation for a stationary isotropic Lamé system with variable coefficients. Commun. Partial Differ. Equ. 23, 371–385 (1998)

    Article  Google Scholar 

  3. Bañuelos, R., Wang, G.: Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms. Duke Math. J. 80(3), 575–600 (1995)

    Article  MathSciNet  Google Scholar 

  4. Barceló, J.A., Folch-Gabayet, M., Pérez-Esteva, S., Ruiz, A., Vilela, M.C.: Limiting absorption principles for the Navier equation in elasticity. Ann. Sc. Norm. Super. Pisa Cl. Sci. 11, 817–842 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Cassano, B., Cossetti, L., Fanelli, L.: Eigenvalue bounds and spectral stability of Lamé operators with complex potentials. arXiv:2101.09350

  6. Chanillo, S., Sawyer, E.: Unique continuation for \(\Delta +V\) and the C. Fefferman–Phong class. Trans. Am. Math. Soc. 318, 275–300 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Cho, Y., Kim, Y., Lee, S., Shim, Y.: Sharp \(L^p\)\(L^q\) estimates for Bochner–Riesz operators of negative index in. J. Funct. Anal. 218, 150–167 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cossetti, L.:. Bounds on eigenvalues of perturbed Lamé operators with complex potentials. arXiv:1904.08445

  9. Dehman, B., Robbiano, L.: La propriété du prolongement unique pour un système elliptique: le système Lamé. J. Math. Pures Appl. 72, 475–492 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Eller, M.: Carleman estimates for some elliptic systems. J. Phys. Conf. Ser. 124, 012023 (2008)

    Article  Google Scholar 

  11. Escauriaza, L.: Unique continuation for the system of elasticity in the plane. Proc. Am. Math. Soc. 134, 2015–2018 (2006)

    Article  MathSciNet  Google Scholar 

  12. Frank, R.: Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43(4), 745–750 (2011)

    Article  MathSciNet  Google Scholar 

  13. Frank, R.: Eigenvalue bounds for Schródinger operators with complex potentials. III. Trans. Am. Math. Soc. 370(1), 219–240 (2018)

    Article  Google Scholar 

  14. Grattan-Guinness, I. (ed.): Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences. Routledge, London (1994)

    MATH  Google Scholar 

  15. Guth, L., Hickman, J., Iliopoulou, M.: Sharp estimates for oscillatory integral operators via polynomial partitioning. Acta Math. 223(2), 251–376 (2019)

  16. Gutiérrez, S.: Non trivial \(L^q\) solutions to the Ginzburg–Landau equation. Math. Ann. 328(1), 1–25 (2004)

    Article  MathSciNet  Google Scholar 

  17. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104(1–2), 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  18. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  19. Jeong, E., Kwon, Y., Lee, S.: Uniform Sobolev inequalities for second order non-elliptic differential operators. Adv. Math. 302, 323–350 (2016)

    Article  MathSciNet  Google Scholar 

  20. Jeong, E., Kwon, Y., Lee, S.: Carleman estimates and boundedness of associated multiplier operators. arXiv:1803.03040

  21. Jerison, D.: Carleman inequalities for the Dirac and Laplace operators and unique continuation. Adv. Math. 62(2), 118–134 (1986)

    Article  MathSciNet  Google Scholar 

  22. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121, 463–488 (1985)

    Article  MathSciNet  Google Scholar 

  23. Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

    Article  MathSciNet  Google Scholar 

  24. Kwon, Y., Lee, S.: Sharp \(L^p\)-\(L^q\) estimate for the spherical harmonic projection. RIMS Kokyuroku Bessatsu B70 (2018)

  25. Kwon, Y., Lee, S.: Sharp resolvent estimates outside of the uniform boundedness range. Commun. Math. Phys. 374(3), 1417–1467 (2020)

    Article  MathSciNet  Google Scholar 

  26. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, New York (1970)

    MATH  Google Scholar 

  27. Lee, S.: Improved bounds for Bochner–Riesz and maximal Bochner–Riesz operators. Duke Math. 122(1), 205–232 (2004)

    Article  MathSciNet  Google Scholar 

  28. Lin, C.L., Wang, J.N.: Strong unique continuation for the Lamé system with Lipschitz coefficients. Math. Ann. 331, 611–629 (2005)

    Article  MathSciNet  Google Scholar 

  29. Lin, C.L., Nakamura, G., Wang, J.N.: Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients. Duke Math. 155(1), 189–204 (2010)

    Article  MathSciNet  Google Scholar 

  30. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall, London (1983). reprinted by Dover Publications, New York, 1994

    MATH  Google Scholar 

  31. Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction. Elsevier, Amsterdam (1981)

    MATH  Google Scholar 

  32. Osȩkowski, A.: Sharp weak type estimates for Riesz transforms. Monatsh. Math. 174(2), 305–327 (2014)

    Article  MathSciNet  Google Scholar 

  33. Seo, I.: Global unique continuation from a half space for the Schrödinger equation. J. Funct. Anal. 266, 85–98 (2014)

    Article  MathSciNet  Google Scholar 

  34. Seo, I.: From resolvent estimates to unique continuation for the Schrödinger equation. Trans. Am. Math. Soc. 368(12), 8755–8784 (2016)

    Article  Google Scholar 

  35. Sogge, C.D.: Strong uniqueness theorems for second order elliptic differential equations. Am. J. Math. 112(6), 943–984 (1990)

    Article  MathSciNet  Google Scholar 

  36. Stein, E.M.: Appendix to Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121, 489–494 (1985)

    Article  Google Scholar 

  37. Tao, T.: A sharp bilinear restriction estimate for paraboloids. Geom. Funct. Anal. 13, 1359–1384 (2003)

    Article  MathSciNet  Google Scholar 

  38. Weck, N.: Unique continuation for systems with Lamé principal part. Math. Methods Appl. Sci. 24, 595–605 (2001)

    Article  MathSciNet  Google Scholar 

  39. Wolff, T.: Recent work on sharp estimates in second-order elliptic unique continuation problems. J. Geom. Anal. 3(6), 621–650 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the KIAS Individual Grant and the National Research Foundation of Korea (NRF) with grant numbers MG073701 and NRF-2020R1F1A1A010735 2012 (Yehyun Kwon), NRF-2021R1A2B5B02001786 (Sanghyuk Lee), and NRF-2019R1F1A1061316 (Ihyeok Seo). The authors would like to thank Alberto Ruiz for informing us of the paper [4] and the anonymous referee for very careful reading and various helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehyun Kwon.

Additional information

Communicated by Hans G. Feichtinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y., Lee, S. & Seo, I. Resolvent Estimates for the Lamé Operator and Failure of Carleman Estimates. J Fourier Anal Appl 27, 53 (2021). https://doi.org/10.1007/s00041-021-09859-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09859-6

Keywords

Mathematics Subject Classification

Navigation