Skip to main content
Log in

Biocontrol Efficacy of Mycosynthesized Selenium Nanoparticle Using Trichoderma sp. on Insect Pest Spodoptera litura

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Insect pest control is facing a major challenge due to the increase of insecticide resistance, so alternative approaches are urgently needed. In this present study, selenium nanoparticles (SeNPs) were synthesized using Trichoderma fungus culture filtrate and tested on Spodoptera litura larvae. Synthesized SeNPs was characterized using UV–Vis, XRD, FTIR, SEM, EDaX, and DLS analysis. UV–Vis spectroscopy shows a maximum peak at 259 nm. The presence of multiple functional groups such as, anhydrides, phosphines, nitro groups, alkanes, alcohols and sulfonates was identified by using FTIR. Synthesized SeNPs are spherical in shape as per SEM analysis. EDaX analysis confirms the presence of selenium elemental compound (87.98%). XRD study reveals that the selenium appears as crystalline in nature. DLS shows that SeNPs size range between 40 to 100 nm. SeNPs tested for larvicidal activity on S. litura larvae at three different concentrations showed significant larval mortality after 48 h of exposure LC50 and LC90 value of SeNPs were 39.739 and 142.839 ppm respectively. Highest antifeedant activity was observed in 100 μg/ml at 48 h of SeNPs exposure. The overall results shows that the Trichoderma, selenium nanoparticles are very effective as larvicidal and antifeedant agent and can be used for control of S. litura larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Vivekanandhan, T. Kavitha, S. Karthi, S. Senthil-Nathan, and M. S. Shivakumar (2018). Int. J. Environ. Res. Public Health. 15 (3), 440.

    Article  PubMed Central  CAS  Google Scholar 

  2. P. Vivekanandhan, A. Usha-Raja-Nanthini, G. Valli, and M. S. Shivakumar (2020). Nat. Prod. Res. 34 (18), 2626–2629.

    Article  CAS  PubMed  Google Scholar 

  3. D. Elango, V. Manikandan, P. Jayanthi, P. Velmurugan, B. Balamuralikrishnan, A. V. Ravi, and M. S. Shivakumar (2020). Curr. Plant. Biol. 23, 100153.

    Article  Google Scholar 

  4. P. W. Inglis, F. J. L. Aragao, H. Frazao, B. P. Magalhaes, and M. C. Valadares-Inglis (2000). FEMS Microbiol. Lett. 191 (2), 249–254.

    Article  CAS  PubMed  Google Scholar 

  5. R. I. Carruthers, M. E. Ramos, T. S. Larkin, D. L. Hostetter, and R. S. Soper (1997). Mem. Entomol. Soc. Can. 129 (S171), 329-353 5.

    Article  Google Scholar 

  6. I. S. Druzhinina, V. Seidl-Seiboth, A. Herrera-Estrella, B. A. Horwitz, C. M. Kenerley, E. Monte, and C. P. Kubicek (2011). Nat. Rev. Microbiol. 9 (10), 749–759.

    Article  CAS  PubMed  Google Scholar 

  7. A. Martínez-Medina, F. V. Appels, and S. C. van Wees (2017). Plant Signal. Behav. 12 (8), e1345404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. R. Velázquez-Robledo, H. A. Contreras-Cornejo, L. Macías-Rodríguez, A. Hernández-Morales, J. Aguirre, S. Casas-Flores, and A. Herrera-Estrella (2011). Mol. Plant Microbe Interact. 24 (12), 1459–1471.

    Article  PubMed  CAS  Google Scholar 

  9. H. A. Contreras-Cornejo, L. Macías-Rodríguez, A. Herrera-Estrella, and J. López-Bucio (2014). Plant Soil 379 (1–2), 261–274.

    Article  CAS  Google Scholar 

  10. K. Saravanakumar, Y. Li, C. Yu, Q. Q. C. Wang, M. Wang, J. Sun, and J. Chen (2017). Sci. Rep. 7 (1), 1–13.

    Article  CAS  Google Scholar 

  11. F. Berini, S. Caccia, E. Franzetti, T. Congiu, F. Marinelli, M. Casartelli, and G. Tettamanti (2016). Pest Manag. Sci. 72 (5), 980–989.

    Article  CAS  PubMed  Google Scholar 

  12. S. P. Wraight and R. I. Carruthers, in F. Hall and J. Menn (eds.), Biopesticides: Use and Delivery (Humana Press, Totowa, NJ, 1999), pp. 233–269.

  13. G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28 (1), 1–2.

    Article  CAS  Google Scholar 

  14. S. S. Salem, M. M. Fouda, A. Fouda, M. A. Awad, E. M. Al-Olayan, A. A. Allam, and T. I. Shaheen (2021). J. Clust. Sci. 32, 351–361.

  15. M. Iranifam, M. Fathinia, T. S. Rad, Y. Hanifehpour, A. R. Khataee, and S. W. Joo (2013). Talanta 107, 263–269.

    Article  CAS  PubMed  Google Scholar 

  16. S. A. Wadhwani, U. U. Shedbalkar, R. Singh, and B. A. Chopade (2016). Appl. Microbiol. Biotechnol. 100, 2555–2566.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt (2011). IET Nanobiotechnol. 5, 69–78.

    Article  CAS  PubMed  Google Scholar 

  18. N. Kulkarni and U. Muddapur (2014). J. Nanotechnol. 2014, 1–8.

    Article  CAS  Google Scholar 

  19. A. Ivask, I. Kurvet, K. Kasemets, I. Blinova, V. Aruoja, S. Suppi, and A. Kahru (2014). PLoS ONE. 9 (7), e10210815.

    Article  CAS  Google Scholar 

  20. K. B. Narayanan and N. Sakthivel (2011). J. Hazard. Mater. 189, 519–525.

    Article  CAS  PubMed  Google Scholar 

  21. M. E. Castro, L. Cottet, and A. Castillo (2014). Mater. Lett. 115, 42–44.

    Article  CAS  Google Scholar 

  22. V. V. Acharya, L. H. Pedersen, T. Philippon, and M. Richardson (2017). Rev. Financ. Stud. 30 (1), 2–47.

    Article  Google Scholar 

  23. V. Parkash, A. Gaur, and R. Agnihotri, Nanotechnology for Food, Agriculture, and Environment. (Springer, Cham, 2020), pp. 1–18.

    Book  Google Scholar 

  24. P. Khandel and S. K. Shahi (2018). J. Nanostruct. Chem. 8, 369–391.

    Article  CAS  Google Scholar 

  25. A. Husen and K. S. Siddiqi (2014). J. Nanotechnol. 12, 28.

    Google Scholar 

  26. B. Hosnedlova, M. Kepinska, S. Skalickova, C. Fernandez, B. Ruttkay-Nedecky, T. D. Malevu, and R. Kizek (2017). Int. J. Mol. Sci. 18 (10), 2209.

    Article  PubMed Central  CAS  Google Scholar 

  27. M. Rizwan, S. Ali, M. Z. U. Rehman, J. Rinklebe, D. C. Tsang, F. M. Tack, and Y. S. Ok (2020). Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2020.1796566

  28. K. Dhivya, G. Vengateswari, M. Arunthirumeni, S. Karthi, S. Senthil-Nathan, and M. S. Shivakumar (2018). Physiol. Mol. Plant Pathol. 101, 45–53.

    Article  CAS  Google Scholar 

  29. S. N. Sengottayan (2013). Front. Physiol. 4, 359.

    Google Scholar 

  30. D. Pimentel (1995). J. Agric. Environ. Ethics 8 (1), 17–29.

    Article  Google Scholar 

  31. S. Senthil-Nathan (2015). Environ. Sustain. 49–63.

  32. M. B. Isman, O. Koul, A. Luczynski, and J. Kaminski (1990). J. Agric. Food. Chem. 38 (6), 1406–1411.

    Article  CAS  Google Scholar 

  33. N. Singh, P. Saha, K. Rajkumar, and J. Abraham (2014). Der. Pharm. Lett. 6 (6), 175–181.

    CAS  Google Scholar 

  34. M. Arif, M. Alagawany, M. A. El-Hack, M. Saeed, M. Arain, and S. Elnesr (2019). Iran. J. Vet. Res. 20, 167.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. K. Anu, S. Devanesan, R. Prasanth, M. S. AlSalhi, S. Ajithkumar, and G. Singaravelu (2020). J. King Saud Univ. Sci. 32 (4), 2520–2526.

    Article  Google Scholar 

  36. R. Shubharani, M. Mahesh, and Y. M. Yogananda Murthy (2019). J. Nanomed. Nanotechnol. 10 (1), 1–7.

    Google Scholar 

  37. P. Sowndarya, G. Ramkumar, and M. S. Shivakumar (2017). Artif. Cells Nanomed. Biotechnol. 45 (8), 1490–1495.

    Article  CAS  PubMed  Google Scholar 

  38. B. Afzal, D. Yasin, S. Husain, A. Zaki, P. Srivastava, R. Kumar, and T. Fatma (2019). Biocatal. Agric. Biotechnol. 21, 101307.

    Article  Google Scholar 

  39. V. Alagesan and S. Venugopal (2019). J. Bionanosci. 9 (1), 105–116.

    Article  Google Scholar 

  40. S. Menon, H. Agarwal, S. Rajeshkumar, P. J. Rosy, and V. K. Shanmugam (2020). J. Bionanosci. 10, 122–135.

  41. A. K. Chakravarthy, S. B. Kandakoor, B. Atanu, K. Dhanabala, P. Gurunatha, and P. Ramesh (2012). Curr. Biotica 6 (3), 271–281.

    Google Scholar 

  42. J. Yasur and P. U. Rani (2015). Chemos 124, 92–102.

    Article  CAS  Google Scholar 

  43. M. Govindarajan, M. Rajeswary, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli (2016). J. Photochem. Photobiol. B Biol. 161, 482–489.

    Article  CAS  Google Scholar 

  44. G. Benelli, R. Pavela, E. Drenaggi, N. Desneux, and F. Maggi (2020). Ind. Crops Prod. 155, 112844.

    Article  CAS  Google Scholar 

  45. M. C. Sabuda, C. E. Rosenfeld, T. D. DeJournett, K. Schroeder, K. Wuolo Journey, and C. M. Santelli (2020). Front. Microbiol. 11, 2105.

    Article  PubMed  PubMed Central  Google Scholar 

  46. K. Murugan, M. Roni, C. Panneerselvam, U. Suresh, R. Rajaganesh, R. Aruliah, and G. Benelli (2018). Physiol. Mol. Plant Pathol. 101, 202–213.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge the infrastructural support provided to Department of Biotechnology, Periyar University by DST—FIST (SR/FIST/LSI-673/2016). Mr. M. Arunthirumeni acknowledges financial support provided by Periyar University under University Research Fellowship Scheme (Ref No. PU/AD-3/URF/019884/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthugounder Subramanian Shivakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunthirumeni, M., Veerammal, V. & Shivakumar, M.S. Biocontrol Efficacy of Mycosynthesized Selenium Nanoparticle Using Trichoderma sp. on Insect Pest Spodoptera litura. J Clust Sci 33, 1645–1653 (2022). https://doi.org/10.1007/s10876-021-02095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02095-4

Keywords

Navigation