Skip to main content
Log in

Effect of Piezoelectric Interphase Thickness on Nonlinear Behavior of Multiphase Magneto–Electro–Elastic Fibrous Composite Plate

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

This paper presents the effect of piezoelectric interphase thickness on the nonlinear behavior of multiphase magneto–electro–elastic (MMEE) fibrous composite plates. A layer-wise shear deformation theory has been considered for the kinematics of the MMEE plate integrated with the principle of virtual work in a three-dimensional finite element (FE) formulation. To incorporate the effect of piezoelectric interphase thickness on the nonlinear behavior of the plate, the multiphase fibrous composite substrate considered for the evaluation is consists of carbon fibers surrounded by a thin coating of piezoelectric fiber (PZT-7A) embedded in piezomagnetic (cobalt ferrite-CoFe2O4) matrix material. The influence of piezoelectric and piezomagnetic coupled fields on the stiffness and nonlinear behavior of MMEE (CoFe2O4/PZT-7A/Carbon) composites considerably varies with PZT-7A interphase thickness. Thus, the transient response, nonlinear frequency ratio, and nonlinear deflection of the structure remarkably changes. Besides, the variation of fiber/matrix volume fraction and interphase thickness exhibits tremendous influence on the nonlinear behavior of the MMEE fibrous composite plate. Further attention has been paid to investigate the influence of boundary conditions, aspect ratio, volume fraction, and coupled fields on the nonlinear behavior of the MMEE fibrous composite plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Van den Boomgaard J, Born R (1978) A sintered magnetoelectric composite material BaTiO3-Ni (Co, Mn) Fe2O4. J Mater Sci 13(7):1538–1548

    Google Scholar 

  2. Van Run A, Terrell D, Scholing J (1974) An in situ grown eutectic magnetoelectric composite material. J Mater Sci 9(10):1710–1714

    Google Scholar 

  3. Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R (2016) Interphase effects on the thermo-mechanical properties of three-phase composites. Proc Inst Mech Eng Part C 230(19):3361–3371

    Google Scholar 

  4. Dinzart F, Sabar H (2011) Magneto-electro-elastic coated inclusion problem and its application to magnetic-piezoelectric composite materials. Int J Solids Struct 48(16):2393–2401

    Google Scholar 

  5. Kabel J, Hosemann P (2017) Micro-mechanical evaluation of SiC-SiC composite interphase properties and debond mechanisms. Compos B Eng 131:173–183

    Google Scholar 

  6. Bedi HS, Tiwari M, Agnihotri PK (2018) Quantitative determination of size and properties of interphase in carbon nanotube-based multiscale composites. Carbon 132:1525–1533

    Google Scholar 

  7. Wang B, Fang G, Liu S, Liang J (2019) Effect of heterogeneous interphase on the mechanical properties of unidirectional fiber composites studied by FFT-based method. Compos Struct 220:642–651

    Google Scholar 

  8. Lina R, Lénaïk B, Jean-François C, Yoann J (2018) Effect of interphase region on the elastic behavior of unidirectional glass fiber/epoxy composites. Compos Struct 198:109–116

    Google Scholar 

  9. Espinosa-Almeyda Y, Sabina FJ (2017) Influence of imperfect interface and fiber distribution on the antiplane effective magneto-electro-elastic properties for fiber-reinforced composites. Int J Solids Struct 112:155–168

    Google Scholar 

  10. Sudak LJ (2003) Effect of an interphase layer on the electro-elastic stresses within a three-phase elliptic inclusion. Int J Engg Sci 41:1019–1039

    Google Scholar 

  11. Jiang C, Cheung Y (2001) An exact solution for the three-phase piezoelectric cylinder model under anti-plane shear and its applications to piezoelectric composites. Int J Solids Struct 38(28):4777–4796

    MATH  Google Scholar 

  12. Shen L, Li J (2005) Homogenization of a fiber/sphere with inhomogeneous interphase for the effective elastic moduli of composites. Proc R Soc A 461:1475–1504

    Google Scholar 

  13. Espinosa-Almeyda Y, López-Realpozo JC, Rodríguez-Ramos R, Bravo-Castillero J, Guinovart-Díaz RH, Camacho-Montes B, Sabina FJ (2016) Effects of interface contacts on the magneto electro-elastic coupling for fiber reinforced composites. Int J Eng Sci 103:59–76

    MATH  Google Scholar 

  14. Hashemi R, Weng GJ, Kargarnovin MH, Shodja H (2010) Piezoelectric composites with periodic multicoated inhomogeneities. Int J Solids Struct 47(21):2893–2904

    MATH  Google Scholar 

  15. Hashemi R (2016) Magneto-electro-elastic properties of multiferroic composites containing a periodic distribution of general multi-coated inhomogeneities. Int J Eng Sci 103:59–76

    MathSciNet  MATH  Google Scholar 

  16. Beckert W, Kreher W, Braue W, Ante M (2011) Effective properties of composites utilizing fibers with a piezoelectric coating. Int J Solids Struct 48:1525–1533

    Google Scholar 

  17. Aboudi J (2001) Micromechanical analysis of fully coupled electro-magneto-thermoelastic multiphase composites. Smart Mater Struct 10:867

    Google Scholar 

  18. Koutsawa Y, Belouettar S, Makradi A, Tiem S (2011) Generalization of the micro-mechanics’ multi-coating approach to coupled fields composite materials with eigen fields: effective properties. Mech Res Commun 38:45–51

    MATH  Google Scholar 

  19. Kim JY (2011) Micromechanical analysis of effective properties of magneto-electro-thermoelastic multilayer composites. Int J Eng Sci 49:1001–1018

    MATH  Google Scholar 

  20. Li JY, Dunn ML (1998) Micromechanics of magneto electro elastic composite materials: average fields and effective behavior. J Intell Mater Syst Struct 9:404–416

    Google Scholar 

  21. Challagulla KS, Georgiades AV (2011) Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures. Int J Eng Sci 49:85–104

    Google Scholar 

  22. Hadjiloizi DA, Georgiades AV, Kalamkarov AL, Jothi S (2013) Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: part I theory. Eur J Mech A Solids 39:298–312

    MathSciNet  MATH  Google Scholar 

  23. Dai Q, Ng K (2012) Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modeling. Mech Mater 53:29–46

    Google Scholar 

  24. Bakkali A, Azrar L, Ali AA (2013) Micromechanical modeling of magneto-electro-elastic composite materials with multicoated inclusions and functionally graded interphases. J Intell Mater Syst Struct 24(14):1754–1769

    Google Scholar 

  25. Tang T, Yu W (2007) A variational asymptotic micromechanics model for predicting conductivities of composite materials. J Mech Mater Struct 2:1813–1830

    Google Scholar 

  26. Tang T, Yu W (2008) Variational asymptotic micromechanics modeling of heterogeneous piezoelectric materials. Mech Mater 40:812–824

    Google Scholar 

  27. Yu W, Tang T (2007) Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int J Solids Struct 44:3738–3755

    MathSciNet  MATH  Google Scholar 

  28. Yu W, Tang T (2007) A variational asymptotic micromechanics model for predicting thermoelastic properties of heterogeneous materials. Int J Solids Struct 44:7510–7525

    MATH  Google Scholar 

  29. Zhang Z, Wang X (2015) Effective multi-field properties of electro-magneto-thermo-elastic composites estimated by finite element method approach. Acta Mech Solida Sin 28(2):145–155

    Google Scholar 

  30. Dutta G, Panda SK, Mahapatra TR, Singh VK (2016) Electro-magneto-elastic response of laminated composite plate: a finite element approach. Int J Appl Comput Math 3:2573–2592

    MathSciNet  MATH  Google Scholar 

  31. Vinyas M, Kattimani SC (2017) Static analysis of stepped functionally graded magneto-electro- elastic plates in thermal environment: a finite element study. Compos Struct 178:63–86

    Google Scholar 

  32. Vinyas M, Kattimani SC (2018) Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory. Compos Struct 202:1339–1352

    Google Scholar 

  33. Vinyas M, Kattimani S, Harursampath D, Trung NT (2013) Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment. Smart Struct and Syst 24(2):267–292

    Google Scholar 

  34. Lin Y, Sodano HA (2008) Concept and model of a piezoelectric structural fiber for multifunctional composites. Compos Sci Technol 68:1911–1918

    Google Scholar 

  35. Fang XQ, Huang MJ, Liu JX (2014) Feng WJ Dynamic effective property of piezoelectric composites with coated piezoelectric nano-fibers. Compos Sci Technol 98:79–85

    Google Scholar 

  36. Vinyas M, Sunny KK, Harursampatha D, Nguyen-Thoic T, Lojae MAR (2019) Influence of interphase on the multi-physics coupled frequency of three phase smart magneto-electro-elastic composite plates. Compos Struct 226:111254

    Google Scholar 

  37. Vinyasa M (2019) Interphase effect on the controlled frequency response of three-phase smart magneto-electro elastic plates embedded with active constrained layer damping: FE study. Mater Res Express 6:125707

    Google Scholar 

  38. Sladek J, Sladek V, Krahulec S, Pan E (2013) The MLPG analysis of large deflections of magnetoelectroelastic plates. Eng Anal Bound Elem 37:673–682

    MathSciNet  MATH  Google Scholar 

  39. Alaimo A, Benedetti I, Milazzo A (2013) A finite element formulation for large deflection of multilayered magneto-electro-elastic plates. Compos Struct 107:643–653

    Google Scholar 

  40. Milazzo A (2013) Large deflection of magneto-electro-elastic laminated plates. Appl Math Model. https://doi.org/10.1016/j.apm.2013.08.034

    Article  MATH  Google Scholar 

  41. Chen J, Chen H, Pan E, Heyliger PR (2007) Modal analysis of magneto-electro-elastic plates using the state vector approach. J Sound Vib 304:722–734

    Google Scholar 

  42. Shooshtari A, Razavi S (2015) Nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates. IJE Trans A 28(1):136–144

    Google Scholar 

  43. Zhou Y, Zhu J (2016) Vibration and bending analysis of multiferroic rectangular plates using third-order shear deformation theory. Compos Struct 153:712–723

    Google Scholar 

  44. Kattimani SC, Ray MC (2014) Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates. Compos Struct 114:51–63

    Google Scholar 

  45. Chen H, Yu W (2014) A multiphysics model for magneto-electro-elastic laminates. Eur J Mech A/Solids 47:23–44

    MathSciNet  MATH  Google Scholar 

  46. Farajpour A, Hari Yzdi MR, Ratgoo A, Loghmani M, Mohammadi M (2016) Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos Struct 140:323–336

    Google Scholar 

  47. Kattimani SC, Ray MC (2014) Active control of large amplitude vibrations of smart Magneto-electro-elastic doubly curved shells. Int J Mech Mater Des. https://doi.org/10.1007/s10999-014-9252-3

    Article  Google Scholar 

  48. Kattimani SC (2017) Geometrically nonlinear vibration analysis of multiferroic composite plates and shells. Compos Struct 163:185–194

    Google Scholar 

  49. Kattimani SC, Ray MC (2014) Vibration control of multiferroic fibrous composite plates using active constrained layer damping. Mech Syst Signal Process 106:334–354

    Google Scholar 

  50. Kattimani SC, Ray MC (2014) Active control of large amplitude vibrations of smart magneto–electro–elastic doubly curved shells. Int J Mech Mater Des 10:351–378. https://doi.org/10.1007/s10999-014-9252-3

    Article  Google Scholar 

  51. Wang X, Zhou Y, Zheng X (2002) A generalized variational model of magneto-thermo-elasticity for nonlinearly magnetized ferroelastic bodies. Int J Eng Sci 40:1957–1973

    MathSciNet  MATH  Google Scholar 

  52. Ansari R, Gholamib R, Rouhic H (2019) Geometrically nonlinear free vibration analysis of shear deformable magneto-electro-elastic plates considering thermal effects based on a novel variational approach. Thin-Walled Struct 135:12–20

    Google Scholar 

  53. Zhang XL, Xua Q, Zhaob X, Lia YH, Yanga J (2020) Nonlinear analyses of magneto-electro-elastic laminated beams in thermal environments. Compos Struct 234:111524

    Google Scholar 

  54. Haghgoo M, Mohammad-Kazem HA, Ansari R (2018) Effect of piezoelectric interphase on the effective magneto-electro-elastic properties of three-phase smart composites: a micromechanical study. Mech Adv Mater Struct 26:1935–1950

    Google Scholar 

  55. Haghgoo M, Ansari R, Hassanzadeh-Aghdam MK, Darvizeh A (2019) Fully coupled thermo-magneto-electro-elastic properties of unidirectional smart composites with a piezoelectric interphase. Proc Inst Mech Eng Part C 233(8):2813–2829

    Google Scholar 

  56. Kattimani SC (2017) Active damping of multiferroic composite plates using 1–3 piezoelectric composites. Smart Mater Struct 26(12):125021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhaschandra Kattimani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kattimani, S. Effect of Piezoelectric Interphase Thickness on Nonlinear Behavior of Multiphase Magneto–Electro–Elastic Fibrous Composite Plate. J. Vib. Eng. Technol. 9, 1533–1555 (2021). https://doi.org/10.1007/s42417-021-00312-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00312-y

Keywords

Navigation