Skip to main content
Log in

Statistical Mechanics of an Integrable System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We provide here an explicit example of Khinchin’s idea that the validity of equilibrium statistical mechanics in high dimensional systems does not depend on the details of the dynamics, as it is basically a matter of choosing the “proper” observables. This point of view is supported by extensive numerical simulation of the one-dimensional Toda chain, an integrable non-linear Hamiltonian system where all Lyapunov exponents are zero by definition. We study the relaxation to equilibrium starting from very atypical initial conditions and focusing on energy equipartion among Fourier modes, as done in the original Fermi-Pasta-Ulam-Tsingou numerical experiment. We consider other indicators of thermalization as well, e.g. Boltzmann-like probability distributions of energy and the behaviour of the specific heat as a function of temperature, which is compared to analytical predictions. We find evidence that in the general case, i.e., not in the perturbative regime where Toda and Fourier modes are close to each other, there is a fast reaching of thermal equilibrium in terms of a single temperature. We also find that equilibrium fluctuations, in particular the behaviour of specific heat as function of temperature, are in agreement with analytic predictions drawn from the ordinary Gibbs ensemble. The result has no conflict with the established validity of the Generalized Gibbs Ensemble for the Toda model, which is on the contrary characterized by an extensive number of different temperatures. Our results suggest thus that even an integrable Hamiltonian system reaches thermalization on the constant energy hypersurface, provided that the considered observables do not strongly depend on one or few of the conserved quantities. This suggests that dynamical chaos is irrelevant for thermalization in the large-N limit, where any macroscopic observable reads of as a collective variable with respect to the coordinate which diagonalize the Hamiltonian. The possibility for our results to be relevant for the problem of thermalization in generic quantum systems, i.e., non-integrable ones, is commented at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ma, S.-K.: Statistical Mechanics. World Scientific, Singapore (1985)

    Book  Google Scholar 

  2. Sethna, J.: Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  3. Fermi, E., Pasta, J., Ulam, S.: Studies of nonlinear problems. I., Los Alamos Report, LA-1940 (1955)

  4. Livi, R., Pettini, M., Ruffo, S., Sparpaglione, M., Vulpiani, A.: Equipartition threshold in nonlinear large Hamiltoniansystems: the Fermi-Pasta-Ulam model. Phys. Rev. A 31, 1039 (1985)

    Article  ADS  Google Scholar 

  5. Gallavotti, G. (ed.): The Fermi-Pasta-Ulam Problem: A Status Report. Springer (2008)

  6. Flach, S., Ivanchenko, M.V., Kanakov, O.I.: q-Breathers and the Fermi-Pasta-Ulam problem. Phys. Rev. Lett. 95, 064102 (2005)

  7. Benettin, G., Christodoulidi, H., Ponno, A.: The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J. Stat. Phys. 152, 195–212 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ford, J.: The Transition from Analytic Dynamics to Statistical Mechanics In: Advances in Chemical Physics 24, 155, I. Prigogine and S.A. Rice Eds., Wiley (1973)

  9. Ford, J.: The Fermi-Pasta-Ulam problem: paradox turns discovery. Phys. Rep. 213, 271 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. Campbell, D.K., Rosenau, P., Zaslavsky, G.M.: Introduction: the Fermi- Pasta- Ulam problem- the first fifty years. Chaos 15, 015101 (2005)

  11. Gaspard, P.: Chaos, Scattering and Statistical Mechanics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  12. Kinchin, A.I.: Mathematical Foundations of Statistical Mechanics. Dover, New York (1949)

    Google Scholar 

  13. Castiglione, P., Falcioni, M., Lesne, A., Vulpiani, A.: Chaos and Coarse Graining in Statistical Mechanics. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  14. Bricmont, J.: Science of chaos or chaos in science? Phys. Mag. 17, 159 (1995)

    Google Scholar 

  15. Lebowitz, J.L.: Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy. Physica A 194, 1 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zanghì, N.: I fondamenti concettuali dell’ approccio statistico in fisica. In: V. Allori, M. Dorato, F. Laudisa, N. Zanghì (Eds.) La Natura delle Cose, pp. 202 (Carocci Editore, 2005)

  17. Mazur, P., van der Linden, J.: Asymptotic form of the structure function for real systems. J. Math. Phys. 4, 271 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  18. Spohn, H.: Generalized Gibbs ensembles of the classical Toda chain. J. Stat. Phys. 180, 4 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Rigol, M., Muramatsu, A., Olshanii, M.: Hard-core bosons on optical superlattices: dynamics, relaxation in the superfluid insulating regimes. Phys. Rev. A 74, 053616 (2006)

  20. Rigol, M., Dunjko, V., Yurovsky, V., Olshanii, M.: Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)

  21. Rigol, M., Dunjko, V., Olshanii, M.: Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  22. Rossini, D., Silva, A., Mussardo, G., Santoro, G.E.: Effective thermal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett. 102, 127204 (2009)

  23. Calabrese, P., Essler, F.H.L., Fagotti, M.: Quantum quench in the transverse-field Ising chain. Phys. Rev. Lett. 106, 227203 (2011)

  24. Vidmar, L., Rigol, M.: Generalized Gibbs ensemble in integrable lattice models. J. Stat. Mech. 064007, (2016)

  25. Davies, B.: Higher conservation laws for the quantum non-linear Schrödinger equation, Physica A 67, 433 (1990); B. Davies, V. E. Korepin, “Higher conservation laws for the quantum non-linear Schroedinger equation”, arXiv:1109.6604 (2011)

  26. De Luca, A., Mussardo, G.: Equilibration properties of classical integrable field theories. J. Stat. Mech. 064011, (2016)

  27. Gamayun, O., Miao, Y., Ilievski, E.: Domain-wall dynamics in the Landau-Lifshitz magnet and the classical-quantum correspondence for spin transport. Phys. Rev. B 99, 140301 (2019)

  28. Schemmer, M., Bouchoule, I., Doyon, B., Dubail, J.: Generalized Hydrodynamics on an Atom Chip. Phys. Rev. Lett. 122, 090601 (2019)

  29. Del Vecchio Del, G., Vecchio, A., Bastianello, A.De, Luca, G.Mussardo: Exact out-of-equilibrium steady states in the semiclassical limit of the interacting Bose gas. SciPost Phys. 9, 002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Olshanii, M.: Geometry of quantum observables and thermodynamics of small systems. Phys. Rev. Lett. 114, 060401 (2015)

  31. Cugliandolo, L.F., Kurchan, J., Peliti, L.: Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys. Rev. E 55(4), 3898 (1997)

    Article  ADS  Google Scholar 

  32. Mazur, P.: Non-ergodicity of phase functions in certain systems. Physica 43, 533–545 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  33. Perk, J.H.H., Capel, H.W.: Transverse correlations in the inhomogeneous one-dimensional XY-model at infinite temperature. Physica A 92, 163 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  34. Contucci, P., Kurchan, J., Mingione, E.: Equilibrium and dynamics of a multi-bath Sherrington–Kirkpatrick model. J. Phys. A: Math. Theor. 52, (2019)

  35. Contucci, P., Corberi, F., Kurchan, J., Mingione, E.: “Stationarization and Multithermalization in spin glasses”, arXiv:2012.03922 (2020)

  36. Kurchan, J.: Time-reparametrization invariances, multithermalization and the Parisi scheme, arXiv:2101.12702 (2021)

  37. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  38. Toda, M.: Vibration of a Chain with Nonlinear Interaction. J. Phys. Soc. Jpn. 22, 431–436 (1967)

    Article  ADS  Google Scholar 

  39. Hénon, M.: Integrals of the Toda lattice. Phys. Rev. B 9, 1921 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  40. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  41. Benettin, G., Casartelli, M., Galgani, L., Giorgilli, A., Strelcyn, J.M.: On the reliability of numerical studies on stochasticity. I: Existence of time averages, Il Nuovo Cimento B 44, 183 (1978)

  42. Crisanti, A., Falcioni, M., Vulpiani, A.: On the effects of an uncertainty on the evolution law in dynamical systems. Phys. A 160, 482 (1989)

    Article  MathSciNet  Google Scholar 

  43. Livi, R., Pettini, M., Ruffo, S., Vulpiani, A.: Chaotic behaviour in nonlinear Hamiltonian systems and equilibrium statistical mechanics. J. Stat. Phys. 48, 539 (1987)

    Article  ADS  Google Scholar 

  44. Rigol, M., Srednicki, M.: Alternatives to Eigenstate thermalization. Phys. Rev. Lett. 108, 110601 (2012)

  45. Deutsch, J.-M.: Eigenstate thermalization hypothesis. Rep. Prog. Phys. 81, 082001 (2018)

  46. Von Neumann, J.: Proof of the Ergodic theorem and H-theorem in quantum mechanics. EPJ H 35, 201 (2010)

    Article  ADS  Google Scholar 

  47. Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghí, N.: Long-time behavior of macroscopic quantum systems. EPJ H 35, 173 (2010)

    Article  ADS  Google Scholar 

  48. Bohigas, O., Giannoni, M., Schmit, C.: Characterization of Chaotic Quantum Spectraand Universality of Level Fluctuations Law. Phys. Rev. Lett. 52, (1984)

  49. Caux, J.-S., Konik, R.M.: Constructing the Generalized Gibbs Ensemble after a Quantum Quench. Phys. Rev. Lett. 109, (2012)

  50. Barbier, D., Cugliandolo, L.F., Lozano, G.S., Nessi, N.: (Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model, arXiv:2007.14364 (2020)

Download references

Acknowledgements

We acknowledge for useful exchanges A. De Luca, T. Goldfriend, J. Kurchan, R. Livi, G. Mussardo, A. Ponno, V. Ros, A. Scardicchio. M.B. and A.V. acknowledge partial financial support of project MIUR-PRIN2017 Coarse-grained description for non-equilibrium systems and transport phenomena (CO-NEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Gradenigo.

Additional information

Communicated by Irene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Integrals of Motion

Just for the sake of self-consistency we briefly remind here the conservation laws of the Toda system. In the case of a periodic lattice with N particles where \(q_0=q_N\) the first four integrals of motion read as:

$$\begin{aligned} \mathscr {I}_1&= \sum _{i=1}^N p_i \nonumber \\ \mathscr {I}_2&= \sum _{i=1}^N ~\frac{p_i^2}{2} + \mathscr {U}_i \nonumber \\ \mathscr {I}_3&= \sum _{i=1}^N ~\frac{p_i^3}{3} + (p_i+p_{i+1})\mathscr {U}_i \nonumber \\ \mathscr {I}_4&= \sum _{i=1}^N ~\frac{p_i^4}{4} + (p_i^2+p_{i+1}^2+p_ip_{i+1})\mathscr {U}_i + \frac{\mathscr {U}_i^2}{2}+\mathscr {U}_i\mathscr {U}_{i+1}, \end{aligned}$$
(23)

where \(\mathscr {U}_i = e^{-(q_{i+1}-q_i)}\). Note that \(\mathscr {I}_2\) is nothing but the energy (apart for an irrelevant additive constant). The expressions in Eq. (23), see, e.g., [39], can be extended to the case of fixed boundary conditions by conventionally defining a periodic chain with \(2N+2\) particles where the coordinates from \(q_0\) to \(q_{N+1}\) are identical to the original one, while those such as \(q_{N+1+i}\) with \(i=1,\ldots ,N\) are defined in order to have an odd function with respect to the center of the lattice:

$$\begin{aligned} q_{N+1+i}&= -q_{N+1-i} \nonumber \\ p_{N+1+i}&= -p_{N+1-i} \end{aligned}$$
(24)

1.2 Specific Heats

The first step to compute the specific heat is the calculation of the partition function. For consistency with the numerical simulations, we compute it with fixed boundary conditions. That is, we have N variables \(q_i\) with \(i=1,\ldots ,N\) to integrate over, while

$$\begin{aligned} q_0 = q_{N+1} = 0 \end{aligned}$$
(25)

By identifying with the same variable the two fixed boundaries, i.e., \(q_0=q_{N+1}\), we can thus change variables to

$$\begin{aligned} r_i = q_{i+1} - q_i, \end{aligned}$$
(26)

with, in particular

$$\begin{aligned} r_{N}&= q_{N+1} - q_N, \nonumber \\ r_{N+1}&= q_1 - q_{N+1}. \end{aligned}$$
(27)

We can thus safely integrate over the \(N+1\) variables \(r_i\) under the global constraint \(\sum _{i=1}^{N+1}r_i = 0\):

$$\begin{aligned} \mathscr {Z}_N^{(\text {P})}(\beta ) = e^{\beta N} \int _{-\infty }^\infty \prod _{i=1}^{N+1} dr_i~e^{-\beta \sum _{i=1}^{N+1} \exp (-r_i)}~\delta \left( \sum _{i=1}^{N+1} r_i \right) . \end{aligned}$$
(28)

In order to unfold the global constraint it is useful to exploit the inverse Laplace rapresentation of the partition function:

$$\begin{aligned} \mathscr {Z}_N^{(\text {P})}(\beta )&= e^{\beta N}\int _{s_0-i\infty }^{s_0+i\infty } \frac{ds}{2\pi i} \int _{-\infty }^\infty \prod _{i=1}^{N+1} dr_i~ \exp \left( -\beta \sum _{i=1}^{N+1} \exp (-r_i) + s \sum _{i=1}^{N+1} r_i \right) \nonumber \\&= e^{\beta N}\int _{s_0-i\infty }^{s_0+i\infty } \frac{ds}{2\pi i} \left[ \int _{-\infty }^\infty dr~\exp \left( -\beta e^{-r} + s r\right) \right] ^{N+1} \nonumber \\&= e^{\beta N}\int _{s_0-i\infty }^{s_0+i\infty } \frac{ds}{2\pi i}~\exp \left\{ N \log z_\beta (s) \right\} \end{aligned}$$
(29)

where we have introduced the partition function per degree of freedom:

$$\begin{aligned} z_\beta (s) = \int _{-\infty }^\infty dr~\exp \left( -\beta e^{-r} + s r\right) . \end{aligned}$$
(30)

It is convenient to regard \(\beta \) as a parameter in Eq. (30) and consider \(z_\beta (s)\) as a function of s in the complex s plane. Clearly the integral expression in Eq. (30) is well defined only for \(\text {Re}(s)< 0\), so that it is convenient to change variable in the integral of Eq. (29) from s to \(\mu = -s\):

$$\begin{aligned} \mathscr {Z}_N^{(\text {P})}(\beta ) = e^{\beta N}\int _{\mu _0-i\infty }^{\mu _0+i\infty } \frac{d\mu }{2\pi i}~ \exp \left\{ N \log \hat{z}_\beta (\mu ) \right\} , \end{aligned}$$
(31)

where now the contour in the complex plane passes through \(\text {Re}(\mu _0)>0\) and we have the partition function per degree of freedom defined as:

$$\begin{aligned} \hat{z}_\beta (\mu ) = \int _{-\infty }^\infty dr~\exp \left( -\beta e^{-r} - \mu r\right) . \end{aligned}$$
(32)

The partition function of the whole system \(Z_N(\beta )\) can be computed from Eq. (31) by means of a saddle-point approximation in the large-N limit. But first we need to compute explicitly \(\hat{z}_\beta (\mu )\) in Eq. (32). By going through two changes of variables, i.e.,

$$\begin{aligned} x\rightarrow u&= e^{-x} \nonumber \\ u \rightarrow t&= \beta u, \end{aligned}$$
(33)

we obtain

$$\begin{aligned} \hat{z}_\beta (\mu )&= \int _0^\infty du~u^{\mu -1}e^{-\beta u} = \frac{1}{\beta ^\mu } \int _0^\infty dt~t^{\mu -1}~e^{-t} \nonumber \\ \hat{z}_\beta (\mu )&= \frac{\Gamma (\mu )}{\beta ^\mu }. \end{aligned}$$
(34)

In order to compute the integral in Eq. (31) by means of the saddle-point approximation we just need to solve the saddle-point equation

$$\begin{aligned}&\frac{\partial }{\partial \mu }\left( \log \Gamma (\mu ) - \mu \log (\beta ) \right) = 0 \nonumber \\&\Longrightarrow ~\frac{\Gamma '(\mu )}{\Gamma (\mu )} = \log (\beta ) \end{aligned}$$
(35)

At this stage, without doing any approximation and indicating as \(\hat{\mu }(\beta )\) the function implicitly determined by the condition in Eq. (35), one has that the partition function of the system reads:

$$\begin{aligned} \mathscr {Z}_N^{(\text {P})}(\beta ) = e^{\beta N} \frac{\Gamma (\hat{\mu }(\beta ))}{\beta ^{\hat{\mu }(\beta )}}. \end{aligned}$$
(36)

For instance the specific heat \(C_V\), which can be obtained from Eq. (36) using the standard formula in Eq. (18) of the main text, reads as

$$\begin{aligned} C_V = - \frac{1}{\psi '(\hat{\mu }(\beta ))} - \left[ \psi (\hat{\mu }(\beta ))- \log (\beta ) \right] \left( \frac{\psi ^{''}(\hat{\mu }(\beta ))}{[\psi '(\hat{\mu }(\beta ))]^3} + \frac{1}{\psi '(\hat{\mu }(\beta ))} \right) + \hat{\mu }(\beta ), \end{aligned}$$
(37)

being \(\psi (x)\) the so-called digamma function \(\psi (x) = \Gamma '(x)/\Gamma (x)\). The expression in Eq. (37) is not very insightful, but is necessary to plot the full analytic behavior of the function. Similarly one can write down the expression for the temperature, but we leave this exercise to the willing reader.

On the contrary, what can be obtained explicitly, are the asymptotic behaviors for both the average potential energy \(\langle u \rangle \) and the specific heat \(C_V\) in the limit of small and large temperatures T. This is obtained by the knowledge of the two asymptotic behaviors of the digamma function \(\psi (\mu )\):

$$\begin{aligned} \mu \rightarrow \infty ~~~&\Longrightarrow ~~~\psi (\mu ) \sim \log (\mu ) \nonumber \\ \mu \rightarrow 0~~~&\Longrightarrow ~~~\psi (\mu ) \sim - \frac{1}{\mu }. \end{aligned}$$
(38)

We thus have two different approximations for our saddle-point equations in the low-temperature, \(\beta \rightarrow \infty \), or the high-temperature, \(\beta \rightarrow 0\), limit:

$$\begin{aligned} \text {Low T:}~~~\Longrightarrow ~~~ \log (\mu )&= \log (\beta )~~~\Longrightarrow ~~~\mu =\beta \nonumber \\ \text {High T:}~~~\Longrightarrow ~~~ -\frac{1}{\mu }&= \log (\beta )~~~\Longrightarrow ~~~\mu =-\frac{1}{\log (\beta )} \nonumber \\ \end{aligned}$$
(39)

Let us first consider the low-temperature case, where Toda is well-approximated by a system of weakly coupled harmonic oscillators, for which the specific heat is constant. In this case we get:

$$\begin{aligned} Z_N(\beta ) \approx \exp \left( (N+1) \left[ \beta + \log \Gamma (\beta ) -\beta \log (\beta ) \right] \right) . \end{aligned}$$
(40)

By using the Stirling’s approximation

$$\begin{aligned} \log \Gamma (\beta ) = \beta \log (\beta ) - \beta -\frac{1}{2} \log (\beta ), \end{aligned}$$
(41)

we thus get

$$\begin{aligned} Z_N(\beta ) \approx \exp \left[ - \frac{N}{2}\log (\beta ) \right] . \end{aligned}$$
(42)

From Eq. (42) and from the definition of \(C_V\) in Eq. (18) in the main text we get

$$\begin{aligned} C_V = \beta ^2\frac{\partial ^2}{\partial \beta ^2}\left( \frac{N}{2}\log (\beta ) \right) = \frac{1}{2}. \end{aligned}$$
(43)

In the light of the high-temperature expansion, we get

$$\begin{aligned} \beta \rightarrow 0 \Longrightarrow \mathscr {Z}_N(\beta ) \approx \left\{ N\left[ \beta +\log \Gamma \left( -\frac{1}{\log (\beta )}\right) \right] \right\} . \end{aligned}$$
(44)

By exploiting the identity of the Euler gamma function \(z\Gamma (z)=\Gamma (z+1)\) one has that

$$\begin{aligned} z \rightarrow 0 ~~~\Longrightarrow ~~~\Gamma (z) \sim \frac{1}{z}, \end{aligned}$$
(45)

from which we have

$$\begin{aligned}&\log \mathscr {Z}_N(\beta ) \approx \left\{ N\left[ \beta +\log \left( -\log (\beta ) \right) \right] \right\} \nonumber \\&\Longrightarrow ~~~C_V \sim \frac{1}{\log (T)} \end{aligned}$$
(46)

In a similar manner one obtains the behavior of the average energy \(\langle u \rangle \), which is reported in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldovin, M., Vulpiani, A. & Gradenigo, G. Statistical Mechanics of an Integrable System. J Stat Phys 183, 41 (2021). https://doi.org/10.1007/s10955-021-02781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02781-7

Keywords

Navigation