Skip to main content
Log in

Aerodynamic Compensation Methods for Aeroelastic Divergence of Forward-Swept Wing

  • AERO- AND GAS-DYNAMICS OF FLIGHT VEHICLES AND THEIR ENGINES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

This paper presents the theoretically and practically grounded methods for aerodynamic compensation of aeroelastic divergence of a forward-swept wing. A special attention is paid to the discovered generation of a normally bound tornado-like vortex. Numerical research of separated flow morphology as well as lifting properties of the system are confirmed by a natural experiment in the wind tunnel and an in-flight experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Antselovich, L.L., Neizvestnyi Yunkers (Unknown Junkers), Moscow: Eksmo, 2012.

    Google Scholar 

  2. Ashworth, J., Mouch, T., and Luttges, M.W., Application of Forced Unsteady Aerodynamics to a Forward Swept Wing X-29 Model, Proc. 26th Aerospace Sciences Meeting, 1988.

    Google Scholar 

  3. Bauer, J.E., Clarke, R., and Burken, J.J., Flight Test of the X-29A at High Angle of Attack: Flight Dynamics and Controls, NASA Technical Paper no. 3537, Washington: NASA. 1995, 70 p.

  4. Iliff, K.W. and Wang, K.-Sh.Ch., X-29A Lateral-Directional Stability and Control Derivatives Extracted from High-Angle-of-Attack Flight Data, NASA Technical Paper no. 3664, Washington: NASA, 1996, 40 p.

  5. Zhang, G.Q., Yu, S.C.M., Chien, A., and Yang, S.X., Aerodynamic Characteristics of Canard-Forward Swept Wing Aircraft Configurations, Journal of Aircraft, 2013, vol. 50, no. 2, pp. 378–387.

    Article  Google Scholar 

  6. Forward-Swept Wing: all Pros and Cons, URL: https://www.popmech.ru/weapon/8844-krylo-s-obratnoy-strelovidnostyu-aerodinamika.

  7. Su-47 Berkut, URL: http://www.airwar.ru/enc/fighter/s37.html.

  8. Zakharov, S.B. and Sudakov, G.G., Wing Panel Sweep Impact on Aerodynamic Characteristics of the Wing with Separated Flow Strake, Uchenye Zapiski TsAGI, 1985, vol. XVI, no. 2, pp. 85–87.

    Google Scholar 

  9. Nekrasova, M.N., Transonic Flow about the Root Part of Forward and Backward Swept Wings, Uchenye Zapiski TsAGI, 1985, vol. XVI, no. 4, pp. 94–99.

    Google Scholar 

  10. Potapova, L.A. and Shteinberg, R.I., Wave Drag of Backward Swept and Forward Swept Wings at Subsonic Speeds, Uchenye Zapiski TsAGI, 1980, vol. XI, no. 3, pp. 98–100.

    Google Scholar 

  11. Oshchepkov, G.E. and Chernigovskii, V.I., Comparative Evaluation of Aerodynamic Characteristics of Normal Layout Aircraft Model with Backward Swept and Forward Swept Wings at Low Subsonic Speeds, Trudy TsAGI, 1995, issue 2584, pp. 26–35.

    Google Scholar 

  12. Gladkov, A.A. and Ratner, R.A., Peculiarities of Lifting Properties of Aircraft with Forward Swept Wings at Supersonic Speeds, Uchenye Zapiski TsAGI, 1984, vol. XV, no. 2, pp. 109–113.

    Google Scholar 

  13. Bulat, P., On the Way to the Fifth and Sixth Generation. Part III. Twenty Years Later, URL: http://otvaga2004.ru/kaleydoskop/kaleydoskop-air/5-6-pokoleniye-3.

  14. Kurochkin, F.P., Osnovy proektirovaniia samoletov s vertikal’nym vzletom i posadkoi (Basics of Designing Aircraft with Vertical Take-Off and Landing), Moscow: Mashinostroieniie, 1970.

    Google Scholar 

  15. Simonov, M.P., Knyshev, A.I., Barkovskii, A.F., Korchagin, V.M., Blinov, A.I., Galushko, V.G., et. al., RU Patent 2 207 968, Byull. Izobret., 2003, no. 19.

  16. Vlasov, A.N., Grigor’ev, Yu.L., Sukhanov, V.L., and Tarasov, A.Z., RU Patent 2 099 244, Byull. Izobret., 1997, no. 15.

  17. Anikeiev, A.F., Barkovskii, V.I., Buntin, N.N., Vlasov, P.N., Vorobiev, A.V., et. al., RU Patent 2 392 186, Byull. Izobret., 2010, no. 17.

  18. Thomas, L., Pace, S., and Parcon, Z., F-22, URL: https://www.yumpu.com/en/document/view/30496336/f-22-the-aoe-home-page.

  19. Bulat, P., On the Way to the Fifth and Sixth Generations. Part V. Powerful Engine for the Fifth Generation, URL: http://otvaga2004.ru/kaleydoskop/kaleydoskop-air/5-6-pokoleniye-5/.

  20. Yaros, S.F., Sexstone, M.G., Huebnet, L.D., Lamar, J.E., et al., Synergistic Airframe-Propulsion Interactions and Integrations, NASA/TM-1998-207644, Washington: NASA, 1998, 124 p.

  21. Pavlenko, V.F., Samolety vertikal’nogo vzleta i posadki (Aircraft of Vertical Take-off and Landing), Moscow: Voenizdat, 1966.

    Google Scholar 

  22. Joyce, D.A., Flying beyond the Stall: the X-31 and the Advent of Supermaneuverability, Washington: NASA, 2014.

    Google Scholar 

  23. Biryuk, V.I. and Sharanyuk, A.V., Optimization of Structural-Force Schemes When Using Anisotropic Models According to the Conditions of Aeroelasticity, Uchenye Zapiski TsAGI, 1984, vol. XV, no. 6, pp. 77–84.

    Google Scholar 

  24. Boitsov, B.V., Gavva, L.M., Endogur, A.I., and Firsanov, V.V., Stress-Strain State and Buckling Problems of Structurally-Anisotropic Aircraft Panels Made of Composite Materials in View of Production Technology, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 4, pp. 20–27 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 4, pp. 524–532].

    Google Scholar 

  25. Gonchar, A.E., RU Patent 2 266 233, Byull. Izobret., 2005, no. 35.

  26. Kornev, A.V., Sereda, V.A., and Migalin, K.V., Aerodynamic Design Method of Integrated Aircraft with Submerged Intake Devices and Power Plant Included into Airframe Carrying System, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 1, pp. 17–25 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 1, pp. 14–22].

    Google Scholar 

  27. Kravchenko, S.A., Study of Sharply Tapered Swept Wing Tips at Transonic Speeds, Trudy TsAGI, 1994, issue 2532, pp. 21–28.

    Google Scholar 

  28. Mikhailov, Yu.S. and Nikolaeva, K.S., Research on Supercritical Airfoil Adaptation (\(\bar c\) = 13%) at Subsonic Flow Modes, Trudy TsAGI, 1995, issue 2584, pp. 3–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Migalin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 1, pp. 27 - 34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, A.V., Ambrozhevich, M.B., Sereda, V.A. et al. Aerodynamic Compensation Methods for Aeroelastic Divergence of Forward-Swept Wing. Russ. Aeronaut. 64, 28–36 (2021). https://doi.org/10.3103/S1068799821010049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821010049

Keywords

Navigation