Skip to main content
Log in

A Simple Method for Evaluating the Nucleon Densities of Atomic Nuclei Based on Microscopic Charge Densities

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Nuclear fusion is an interesting example of collective nuclear motion; this process provides information on the interaction of nuclei and their structure. Theoretical analysis of fusion cross sections is often based on the double folding model, which is used for calculation of the potential energy of the interaction between colliding nuclei (nucleus-nucleus potential). The nucleon density is an important ingredient of this model. Calculation of this density in the framework of microscopic models is extremely cumbersome. In this paper, we propose a simplified method for calculating the neutron and proton densities based on microscopic densities of six reference nuclei. This method allows one to obtain nucleon densities with minimal computer resources and can be easily used by experimenters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Y. T. Oganessian and V. K. Utyonkov, Rep. Prog. Phys. 78, 36301 (2015).

    Article  Google Scholar 

  2. B. B. Back, H. Esbensen, C. L. Jiang, and K. E. Rehm, Rev. Mod. Phys. 86, 317 (2014).

    ADS  Google Scholar 

  3. D. Jacquet and M. Morjean, Prog. Part. Nucl. Phys. 63, 155 (2009).

    Article  ADS  Google Scholar 

  4. P. Fröbrich and I. I. Gontchar, Phys. Rep. 292, 131 (1998).

    Article  ADS  Google Scholar 

  5. N. Schunck and L. M. Robledo, Rep. Prog. Phys. 79, 116301 (2016).

    Article  ADS  Google Scholar 

  6. A. N. Andreyev, K. Nishio, and K.-H. Schmidt, Rep. Prog. Phys. 81, 016301 (2018).

    Article  ADS  Google Scholar 

  7. G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 68, 034601 (2003).

    Article  ADS  Google Scholar 

  8. C. Schmitt, K. Mazurek, and P. N. Nadtochy, Phys. Rev. C 100, 64606 (2019).

    Article  ADS  Google Scholar 

  9. K. Hammerton, D. J. Morrissey, Z. Kohley, et al., Phys. Rev. C 99, 54621 (2019).

    Article  ADS  Google Scholar 

  10. M. Dasgupta, D. J. Hinde, N. Rowley, and A. M. Stefanini, Ann. Rev. Nucl. Part. Sci. 48, 401 (1998).

    Article  ADS  Google Scholar 

  11. S. Hudan, R. T. de Souza, A. S. Umar, et al., Phys. Rev. C 101, 61601 (2020).

    Article  ADS  Google Scholar 

  12. G. Montagnoli, A. M. Stefanini, C. L. Jiang, et al., Phys. Rev. C 101, 44608 (2020).

    Article  ADS  Google Scholar 

  13. B. Yilmaz, S. Ayik, D. Lacroix, and O. Yilmaz, Phys. Rev. C 90, 24613 (2014).

    Article  ADS  Google Scholar 

  14. J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and M. R. Strayer, Phys. Rev. C 74, 27601 (2006).

    Article  ADS  Google Scholar 

  15. K. Benrabia, D. E. Medjadi, M. Imadalou, and P. Quentin, Phys. Rev. C 96, 34320 (2017).

    Article  ADS  Google Scholar 

  16. K. Hagino, N. Rowley, and A. T. Kruppa, Comput. Phys. Commun. 123, 143 (1999).

    Article  ADS  Google Scholar 

  17. V. I. Zagrebaev and V. V. Samarin, Phys. At. Nucl. 67, 1462 (2004).

    Article  Google Scholar 

  18. P. M. Jacobs and U. Smilansky, Phys. Lett. B 127, 313 (1983).

    Article  ADS  Google Scholar 

  19. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  20. D. T. Khoa, Phys. Rev. C 63, 034007 (2001).

    Article  ADS  Google Scholar 

  21. V. I. Zagrebaev, A. V. Karpov, Ya. Aritomo, M. Naumenko, and W. Greiner, Phys. Part. Nucl. 38, 469 (2007).

    Article  Google Scholar 

  22. J. W. Negele, Rev. Mod. Phys. 54, 913 (1982).

    Article  ADS  Google Scholar 

  23. I. I. Gontchar, R. Bhattacharya, and M. V. Chushnyakova, Phys. Rev. C 89, 034601 (2014).

    Article  ADS  Google Scholar 

  24. M. V. Chushnyakova, R. Bhattacharya, and I. I. Gontchar, Phys. Rev. C 90, 017603 (2014).

    Article  ADS  Google Scholar 

  25. R. Bhattacharya, Nucl. Phys. A 913, 1 (2013).

    Article  ADS  Google Scholar 

  26. M. V. Chushnyakova and I. I. Gontchar, Phys. Rev. C 87, 014614 (2013).

    Article  ADS  Google Scholar 

  27. I. I. Gontchar, D. J. Hinde, M. Dasgupta, et al., Phys. Rev. C 73, 034610 (2006).

    Article  ADS  Google Scholar 

  28. G. G. Adamian, N. V. Antonenko, and R. V. Jolos, et al., Int. J. Mod. Phys. E 5, 191 (1996).

    Article  ADS  Google Scholar 

  29. H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  30. I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).

    Article  ADS  Google Scholar 

  31. T. Cooper, W. Bertozzi, J. Heisemberg, et al., Phys. Rev. C 13, 1083 (1976).

    Article  ADS  Google Scholar 

  32. Z. Łojewski, B. Nerlo-Pomorska, K. Pomorski, and J. Dudek, Phys. Rev. C 51, 601 (1995).

  33. R. Hofstadter, F. Bumiller, and M. R. Yearian, Rev. Mod. Phys. 30, 482 (1958).

    Article  ADS  Google Scholar 

  34. B. S. Ishkhanov, I. M. Kapitonov, and N. P. Yudin, Particles and Atomic Nuclei (LKI, Moscow, 2007) [in Russian].

    Google Scholar 

  35. B. A. Brown, Phys. Rev. C 58, 220 (1998).

    Article  ADS  Google Scholar 

  36. http://nrv.jinr.ru/nrv/webnrv/map/.

  37. https://www.nndc.bnl.gov/ensdf/.

  38. V. V. Sargsyan, S. Y. Grigoryev, G. G. Adamian, and N. V. Antonenko, Comput. Phys. Commun. 233, 145 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Sukhareva.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chushnyakova, M.V., Gontchar, I.I. & Sukhareva, O.M. A Simple Method for Evaluating the Nucleon Densities of Atomic Nuclei Based on Microscopic Charge Densities. Moscow Univ. Phys. 76, 9–14 (2021). https://doi.org/10.3103/S0027134921010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134921010057

Keywords:

Navigation