Skip to main content
Log in

Poly(lactic acid)/polyurethane blend electrospun fibers: structural, thermal, mechanical and surface properties

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polyurethane (PU)/poly(lactic acid) (PLA) blends having different weight ratios (80:20, 60:40, 50:50, 40:60 and 20:80) were prepared in a suitable solvent environment. A new non-woven fiber surface with a single structure was obtained from the prepared PU/PLA blend solutions by electrospinning method. The effect of different weight ratios on the characteristic properties of PU/PLA fibers was investigated. The obtained electrospun mats were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), tensile and contact angle tests. The most homogeneous fiber distribution was observed at the structure of 6PU/4PLA (60PU:40PLA w/w) nanofiber. Besides, this fiber was determined to have the highest strength and tensile strain-at-break. Among all fibers, the highest contact angle was observed for 8PU/2PLA (80PU:20PLA w/w) fiber, indicating a hydrophobic structure. According to the DSC results, the melting values of the soft and hard segments of pure PU showed only a melting peak. In XRD results, all electrospun mats which were obtained by blending PLA and PU showed a semi-crystalline structure with low crystallinity. However, these specified fibers showed the thinnest diameter. Thanks to PU/PLA fibers, a new, thinner and more flexible biodegradable surface with perfectly good physical and mechanical properties was obtained. It is expected that the obtained PU/PLA fibers will find a wide range of applications in filtration, liquid-repellent surfaces, medical as wound dressing, and industrial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  2. Tijing LD, Ruelo MTG, Amarjargal A, Pant HR, Park CH, Kim DW, Kim CS (2012) Antibacterial and superhydrophilic electrospun polyurethane nanocomposites fibers containing tourmaline nanoparticles. Chem Eng J 197:41–48

    Article  CAS  Google Scholar 

  3. Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang XW (2011) One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J Mater Chem 21:10330–10335

    Article  CAS  Google Scholar 

  4. Nataraj S, Yang K (2012) Polyacrylonitrile-based nanofibers A state of the art review. Polym Sci 37:487–513

    CAS  Google Scholar 

  5. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  6. Vink ET, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polym Degrad Stabil 80:403–419

    Article  CAS  Google Scholar 

  7. Vink ET, Rábago K, Glassner DA, Springs B, Q’Connor RP, Kolstad J (2004) The sustainability of NatureworksTM polylactide polymers and IngeoTM polylactide fibersa: an update of the future. Macromol Biosci 4:551–564

    Article  CAS  Google Scholar 

  8. Hazer S, Çoban M, Aytaç A (2018) A study on carbon fiber reinforced poly(lactic acid)/polycarbonate composites. J Appl Polym Sci 135:46881–46890

    Article  Google Scholar 

  9. Seki M, Sato K, Yosomiya R (1992) Polyurethane elastomer-LiCIO4 complexes as a polymeric solid electrolyte. Macro Chem Phys 193:2971–2980

    Article  CAS  Google Scholar 

  10. Vanheumen JD, Stevens JR (1995) The role of lithium salts in the conductivity and phase morphology of a thermoplastic polyurethane. Macromolecules 28:4268–4277

    Article  CAS  Google Scholar 

  11. Kuo HH, Chen WC, Wen TC, Gopalan A (2002) A novel composite gel polymer electrolyte for rechargeable lithium batteries. J Power Sources 110:27–33

    Article  CAS  Google Scholar 

  12. Du YL, Wen TC (2001) The feasibility study of composite electrolytes comprising thermoplastic polyurethane and poly(ethylene oxide). Mater Chem Phys 71:62–69

    Article  CAS  Google Scholar 

  13. Santhosh P, Vasudevan T, Gopalan A, Lee KP (2006) Preparation and characterization of polyurethane/poly(vinylidene fluoride) composites and evaluation as polymer electrolytes. Mater Sci Eng B 135:65–73

    Article  CAS  Google Scholar 

  14. Long J, Liu B, Zhang J (2009) Properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/nanoparticle ternary composites. Ind Eng Chem Res 48:7594–7602

    Article  Google Scholar 

  15. Han JJ, Huang HX (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 120:3217–3223

    Article  CAS  Google Scholar 

  16. Feng F, Ye L (2011) Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 119:2778–2783

    Article  CAS  Google Scholar 

  17. Li Y, Shimizu H (2007) Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol Biosci 7:921–928

    Article  CAS  Google Scholar 

  18. Pachon EYG, Graziano RV, Campos RM (2014) Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conf Series Mat Sci Eng 59:012003

    Article  Google Scholar 

  19. Touny AH, Bhaduri SB (2010) A reactive electrospinning approach for nanoporous PLA/monetite nanocomposite fibers. Mater Sci Eng C 30:1304–1312

    Article  CAS  Google Scholar 

  20. Huang C, Thomas NL (2018) Fabricating porous poly(lactic acid) fibres via electrospinning. EurPolym J 99:464–476

    CAS  Google Scholar 

  21. Lee K, Lee B, Kim C, Kim H, Kim K, Nah C (2005) Stress-strain behavior of the electrospun thermoplastic polyurethane elastomer fiber mats. Macromol Res 13:441–445

    Article  CAS  Google Scholar 

  22. Lee S, Obendorf S (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Textile Res J 77:696–702

    Article  CAS  Google Scholar 

  23. Yuryev Y, Mohanty AK, Misra M (2017) Novel biocomposites from biobased PC/PLA blend matrix system for durable applications. Compos B 130:158–166

    Article  CAS  Google Scholar 

  24. Schiffman JD, Schauer CL (2007) Cross-linking chitosan nanofibers. Biomacromol 8:594–601

    Article  CAS  Google Scholar 

  25. Zhao YY, Yang QB, Lu XF, Wang C, Wei Y (2005) Study on correlation of morphology of electrospun products of polyacrylamide with ultrahigh molecular weight. J Polym Sci B 43:2190–2195

    Article  CAS  Google Scholar 

  26. Xu J, Zhang J, Gao W, Liang H, Wang H, Li J (2009) Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater Lett 63:658–660

    Article  CAS  Google Scholar 

  27. Pradhan KC, Nayak PL (2012) Synthesis and characterization of polyurethane nanocomposite from castor oil- hexamethylene diisocyanate (HMDI). Adv Appl Sci Res 5:3045–3052

    Google Scholar 

  28. Raja M, Ryu SH, Shanmugharaj AM (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur Polym J 49:3492–3500

    Article  CAS  Google Scholar 

  29. Silva GG, Calado HDR, Musumeci AW, Martens W, Waclawik ER (2006) Polymer nanocomposites based on P3OT, TPU and SWNT: preparation and characterization. Int Conf Nanosc Nanotech 2006 IEEE, https://doi.org/10.1109/ICONN.2006.340581

  30. Deshmukh KA, Khajanji P, Chopra S, Deshmukh A, Peshwe DR (2020) The influence of micro-graphite addition on nucleation efficiency and isothermal crystallization kinetics of thermoplastic polyurethane (TPU). Mater Today Proc 28:642–650

    Article  CAS  Google Scholar 

  31. Lostocco MR, Huang SJ (1998) The hydrolysis of poly(lactic acid)/poly(hexamethylene succinate) blends. Poly Degrad Stabil 61:225–230

    Article  CAS  Google Scholar 

  32. Ploypetchara N, Suppakula P, Atong D, Pechyena C (2014) Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedi 56:201–210

    Article  CAS  Google Scholar 

  33. Yuan Y, Ruckenstein E (1998) Polyurethane toughened polylactide. Polym Bull 40:485–490

    Article  CAS  Google Scholar 

  34. Lai SM, Lan YC (2013) Shape memory properties of melt-blended polylactic acid(PLA)/thermoplastic polyurethane (TPU) bio-based blends. J Polym Res 20:140–148

    Article  Google Scholar 

  35. Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chiericeet GO (2010) Characterization of polyurethane resins by FTIR, TGA and XRD. Inc J Appl Polym Sci 115:263–268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Aytac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samatya Yilmaz, S., Aytac, A. Poly(lactic acid)/polyurethane blend electrospun fibers: structural, thermal, mechanical and surface properties. Iran Polym J 30, 873–883 (2021). https://doi.org/10.1007/s13726-021-00944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00944-7

Keywords

Navigation