Skip to main content
Log in

Visualization of the Diffraction Contrast between the Ferrite and Martensitic Phases of Steel by the Method of Neutron Radiography

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Neutron radiography using monochromatic neutron radiation makes it possible to visualize the diffraction contrast between different phases in a polycrystalline material due to the difference in the attenuation of the neutron beam intensity in these phases due to coherent neutron scattering. Although this method has already proven itself in studies of the phase distribution in steels, the literature only provides information on phases that differ greatly in structure, such as ferrite and austenite, austenite and martensite, or austenite and bainite. In this work, the possibilities of the method for visualizing the diffraction contrast between the ferrite and martensitic phases of steel with the same chemical composition and similar crystal structures were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tyufyakov, N.D. and Shtan’, A.S., Osnovy neitronnoi radiografii (Fundamentals for Neutron Radiography), Moscow: Atomizdat, 1975.

  2. Allman, B.E., McMahon, P.J., Nugent, K.A., Paganin, D., Jacobson, D.L., Arif, M., and Werner, S.A., Nature, 2000, vol. 408, no. 6809, p. 158. https://doi.org/10.1038/35041626

    Article  ADS  Google Scholar 

  3. Kockelmann, W., Frei, G., Lehmann, E.H., Vontobel, P., and Santisteban, J.R., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 603, no. 3, p. 429. https://doi.org/10.1016/j.nima.2009.02.034

    Article  Google Scholar 

  4. Schulz, M., Böni, P., Calzada, E., Mühlbauer, M., and Schillinger, B., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 605, nos. 1–2, p. 33. https://doi.org/10.1016/j.nima.2009.01.123

    Article  Google Scholar 

  5. Sears, V.F., Neutron News, 1992, vol. 3, no. 3, p. 26. https://doi.org/10.1080/10448639208218770

    Article  Google Scholar 

  6. Hsu, T.C., Marsiglio, F., Root, J.H., and Holden, T.M., J. Neutron Res., 1995, vol. 3, no. 1, p. 27. https://doi.org/10.1080/10238169508200188

    Article  Google Scholar 

  7. Santisteban, J.R., Vicente-Alvarez, M.A., Vizcaino, P., Banchik, A.D., Vogel, S.C., Tremsin, A.S., Vallerga, J.V., McPhate, J.B., Lehmann, E., and Kockelmann, W., J. Nucl. Mater., 2012, vol. 425, nos. 1–3, p. 218. https://doi.org/10.1016/j.jnucmat.2011.06.043

    Article  ADS  Google Scholar 

  8. Tremsin, A.S., McPhate, J.B., Steuwer, A., Kockelmann, W., Paradowska, A.M., Kelleher, J.F., Vallerga, J.V., Siegmund, O.H.W., and Feller, W.B., Strain, 2012, vol. 48, no. 4, p. 296. https://doi.org/10.1111/j.1475-1305.2011.00823.x

    Article  Google Scholar 

  9. Steuwer, A., Withers, P.J., Santisteban, J.R., and Edwards, L., J. Appl. Phys., 2005, vol. 97, no. 7, p. 074903. https://doi.org/10.1063/1.1861144

    Article  ADS  Google Scholar 

  10. Woracek, R., Penumadu, D., Kardjilov, N., Hilger, A., Boin, M., Banhart, J., and Manke, I., Phys. Procedia, 2015, vol. 69, p. 227. https://doi.org/10.1016/j.phpro.2015.07.032

    Article  ADS  Google Scholar 

  11. Meggers, K., Priesmeyer, H.G., Trela, W.J., Bowman, C.D., and Dahms, M., Nucl. Instrum. Methods Phys. Res., Sect. B, 1994, vol. 88, no. 4, p. 423. https://doi.org/10.1016/0168-583X(94)95394-5

    Article  Google Scholar 

  12. Kurdumoff, G. and Kaminsky, E., Nature, 1928, vol. 122, no. 3074, p. 475. https://doi.org/10.1038/122475a0

    Article  ADS  Google Scholar 

  13. Khachaturyan, A.G. and Shatalov, G.A., Fiz. Met. Metalloved., 1971, vol. 32, no. 1-C, p. 5.

    Google Scholar 

  14. Khachaturyan, A.G., Nesovershenstva kristallicheskogo stroeniya i martensitnye prevrashcheniya (Imperfection of Crystal Structure and Martensitic Transformations), Moscow: Nauka, 1972.

  15. Somenkov, V.A., Glazkov, V.P., Em, V.T., Gureev, A.I., Murashev, M.M., Sadykov, R.A., Axenov, S.N., Trunov, D.N., Stolyarov, A.A., Alexeev, A.A., and Kravchuk, L.V., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2019, vol. 13, no. 5, p. 870. https://doi.org/10.1134/S1027451019050148

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on the equipment of UNU NIK IR-8.

This work was supported by the Kurchatov Institute National Research Center (order no. 1886 of August 22, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Murashev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashev, M.M., Glazkov, V.P. & Em, V.T. Visualization of the Diffraction Contrast between the Ferrite and Martensitic Phases of Steel by the Method of Neutron Radiography. Instrum Exp Tech 64, 491–495 (2021). https://doi.org/10.1134/S0020441221030301

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221030301

Navigation