Skip to main content
Log in

Automatic Processing of Microhardness Images Using Computer Vision Methods

  • APPLICATION OF COMPUTERS IN EXPERIMENTS
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

Many algorithms that are capable of determining the indent area in automatic processing of optical images of imprints have found application in hardness measurements using the Vickers method. A robust interactive algorithm based on the maximum separation of color image components in the indentation area and an unstrained surface is described. The efficiency and stability of the presented method are evaluated using indents on several materials with different morphology and deformation character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. GOST R ISO (State Standard) no. 6507-1-2007: Metals and Alloys. Vickers Hardness Test. Part 1. Test Method, Moscow: Standartinform, 2008.

  2. ISO no. 6507-1:2005: Metallic Materials - Vickers Hardness Test, 2005.

  3. Baldner, F., Costa, P.B., Gomes, J.F.S., and Leta, F.R., in Advances in Visualization and Optimization Techniques for Multidisciplinary Research, Vucinic, D., Leta, F.R., and Janardhanan, S., Eds., Singapore: Springer, 2019, pp. 265−281. https://doi.org/10.1007/978-981-13-9806-3_9.

  4. Gadermayr, M., Maier, A., and Uhl, A., Mach. Vision Appl., 2013, vol. 24, no. 6, p. 1183. https://doi.org/10.1007/s00138-012-0478-5

    Article  Google Scholar 

  5. Oliver, W.C. and Pharr, G.M., J. Mater. Res., 2004, vol. 19, no. 1, p. 3. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  ADS  Google Scholar 

  6. Dominguez-Nicolás, M., Herrera-May, A.L., García-González, L., Zamora, L., Hernández-Torres, J., Martínez-Castillo, J., Morales-Gonzalez, E., Cerón-Alvarezand, C.A., and Escobar-Pére, A., Meas. Sci. Technol., 2020, vol. 32, no. 1, p. 015407. https://doi.org/10.1088/1361-6501/abaa66

    Article  ADS  Google Scholar 

  7. Aminzadeh, M. and Kurfess, T., J. Manuf. Syst., 2015, vol. 37, p. 83. https://doi.org/10.1016/j.jmsy.2015.09.004

    Article  Google Scholar 

  8. Truong, M.T.N. and Kim, S., Soft Comput., 2018, vol. 22, no. 13, p. 4197. https://doi.org/10.1007/s00500-017-2709-1

    Article  Google Scholar 

  9. Wakaf, Z. and Jalab, H.A., J. King Saud Univ. − Comput. Inf. Sci., 2018, vol. 30, no. 1, p. 33. https://doi.org/10.1016/j.jksuci.2016.11.001

    Article  Google Scholar 

  10. Firdousi, R. and Parveen, S., Int. J. Eng. Comput. Sci., 2014, vol. 3, no. 3, p. 4062. http://103.53.42.157/index.php/ijecs/article/view/152.

  11. Yong Pan, Yuekang Shan, Yu Ji, and Shibo Zhang, Proc. 4th Int. Symposium on Precision Mechanical Measurements, Anhui, December 31, 2008, 71304C, pp. 998–1003.

  12. Yao, L. and Chih-Heng Fang, IEEE Trans. Ind. Electron., 2006, vol. 53, no. 3, p. 950. https://doi.org/10.1109/TIE.2006.874259

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, scientific project no. 18-08-00558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fedotkin.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotkin, A.P., Laktionov, I.V., Kravchuk, K.S. et al. Automatic Processing of Microhardness Images Using Computer Vision Methods. Instrum Exp Tech 64, 357–362 (2021). https://doi.org/10.1134/S0020441221030180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221030180

Navigation