Skip to main content
Log in

Thermoluminescent Detectors of High-Density Ionizing Radiation

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The study demonstrates use of TLD-K thermoluminescent detectors of ionizing radiation, which are made of a glass-based amorphous material, to measure high-density and high-intensity radiation, i.e., to doses of up to 1 kGy in the operating dosimetric peak at dose rates of up to 1011 Gy/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Radiation Dosimetry: Electron Beams with Energies Between 1 and 50 MeV, Report 35, Bethesda, MD: International Commission on Radiation Units and Measurements, 1984.

  2. Jaeger, R.G., Dosimetrie und Strahlenschutz. Physikalische und technische daten, Stuttgart: Georg Thieme, 1959.

    Google Scholar 

  3. Microdosimetry, Report 36, Bethesda, MD: International Commission on Radiation Units and Measurements, 1984.

  4. Aluker, E.D., Gavrilov, V.V., Deich, R.G., and Chernov, S.A., Bystroprotekayushchie radiatsionno-stimulirovannye protsessy v shchelochno-galoidnykh kristallakh (Fast Radiation-Stimulated Processes in Alkali-Halide Crystals), Riga: Zinatne, 1987.

  5. Antonov-Romanovskii, V.V., Kinetika fotolyuminestsentsii kristalloforov (Kinetics of Crystallophores’ Photoluminescence), Moscow: Nauka, 1966.

  6. McKeever, S.W.S., Moscovitch, M., and Townsend, P.D., Thermoluminescence Dosimetry Materials: Properties and Uses, Ashford: Nuclear Technology Publ., 1995.

    Google Scholar 

  7. Nepomnyashchikh, A.P., Radzhabov, E.L., and Egranov, A.V., Tsentry okraski i lyuminestsentsiya kristallov LiF (Color Centers and Luminescence of LiF Crystals), Novosibirsk: Nauka, 1984.

  8. Aksel’rod, M.S., Kortov, V.S., Mil’man, I.I., Gorelova, E.A., Borisov, A.A., Zatulovskii, L.M., Kraevetskii, D.Ya., Berezina, I.E., and Lebedev, N.K., Izv. Akad. Nauk SSSR, Ser. Fiz., 1988, vol. 52, no. 10, p. 1981.

    Google Scholar 

  9. Kortov, V.S., Mil’man, I.I., and Nikiforov, S.V., Fiz. Tverd. Tela, 1997, vol. 39, no. 9, p. 1538.

    Google Scholar 

  10. IAEA Safety Standards, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, General Safety Requirements Part 3, no. GSR Part 3, Vienna: International Atomic Energy Agency, 2015.

  11. MR (Methodological Recommendations) no. 2.6.1.3015-12: Organization and Realization of Individual Dosimetry Monitoring. Clinical Staff, Moscow, 2012.

  12. Shleenkova, E.N., Radiats. Gig., 2014, vol. 7, no. 3, p. 39.

    Google Scholar 

  13. Vanhavere, F., Carinou, E., Domienik, J., Donadille, L., Ginjaume, M., Gualdrini, G., Koukorava, C., Krim, S., Nikodemova, D., Ruiz Lopez, N., Sans-Mercu, M., and Struelens, L., Radiat. Meas., 2011, vol. 46, no. 11, p. 1243.

    Article  Google Scholar 

  14. Bochvar, I.A., Gimadova, T.I., Keirim-Markus, I.B., Kushnerev, A.Ya., and Yakubik, V.V., Metod dozimetrii IKS (Method of IKS Dosimetry), Moscow: Atomizdat, 1977.

  15. Aluker, N.L. and Aluker, E.D., Inventor’s Certificate no. 2108598, 1998. http://www.findpatent.ru/patent/ 210/2108598.html.

  16. Gimadova, T.I., Shaks, A.I., Semenov, A.V., and Vasil’ev, I.O., ANRI, 2001, no. 3 (26), p. 20.

  17. Aluker, N.L., Artamonov, A.S., Bakulin, Yu.P., Danilevich, E.N., Krysanova, O.L., Riskina, R.V., and Sogoyan, A.V., Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Vozdeistv. Radioelektron. Appar., 2006, nos. 3–4, p. 86.

  18. Aluker, N.L., Suzdaltseva, J.M., Dulepova, A.C., and Herrmann, M., Instrum. Exp. Tech., 2016, vol. 59, no. 5, pp. 733–739. https://doi.org/10.1134/S002044121605002X

    Article  Google Scholar 

  19. Raitzig, M., Goodband, R.J., Schuster, C., and Harling, T., Tech. Mess., 2016, vol. 83, p. 171.

    Google Scholar 

  20. GOST (State Standard) no. 34157-2017: Standard Practice for Dosimetry in Electron Beam and X-Ray (Bremsstrahlung) Irradiation Facilities for Food Processing, Moscow: Standartinform, 2019.

  21. Bakulin, Yu.P., Baranov, V.P., Danilovich, E.N., and Yashin, S.N., Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Vozdeistv. Radioelektron. Appar., 2010, no. 4, p. 104.

  22. Ivanov, S.I., Loginova, S.V., Akopova, N.A., Okhrimenko, S.E., and Nurlubaev, K.N., Med. Radiol. Radiats. Bezop., 2014, vol. 59, no. 4, p. 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. L. Aluker, A. S. Artamonov or M. Herrmann.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aluker, N.L., Artamonov, A.S. & Herrmann, M. Thermoluminescent Detectors of High-Density Ionizing Radiation. Instrum Exp Tech 64, 437–443 (2021). https://doi.org/10.1134/S0020441221020214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221020214

Navigation