Skip to main content
Log in

High-throughput Double-mode Ultrasonic Micro-separator Based on 2D Normal Mode

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Two excitation methods based on 2D normal mode were proposed using two piezoelectric transducers (PZTs) with opposite phase and in-phase to excite the two dimensional normal modes of (1, 1) and (2, 1), respectively. The theoretical models of the excitation modes were deduced by the wave equation. An ultrasonic separator was built and the acoustic simulation of the ultrasonic excitation modes was modeled in Ansys software. The simulation results of the sound pressure distribution in the flow channel show that (1, 1) and (2, 1) are successfully excited. The micro-separator with 8 mm width and 0.2 mm high flow channel was fabricated on silicon on insulator (SOI) by micro-processing technology to form a perfect reflection layer of the separator. An experimental platform was established and the results show that both excitation methods can achieve the separation of suspended particles with high-through of 100 μL/min. In the experiment of (1, 1) excitation method, it can be seen that most of the particles converge in the center of the separation cavity into a large bunch, and in the experiment of (2, 1) excitation method, the particles mainly converge on both sides of the separation chamber. Both methods can successfully separate suspended particles out of the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ozcelik, A., Rufo, J., Feng Guo, Yuyang Gu, Peng Li, Lata, J., and Huang, T.J., Nat. Methods, 2018, vol. 15, no. 12, p. 1021. https://doi.org/10.1038/s41592-018-0222-9

    Article  Google Scholar 

  2. Kandemir, M.H., Wagterveld, R.M., Yntema, D.R., and Keesman, K.J., Sci. Rep., 2019, vol. 9, p.7156. https://doi.org/10.1038/s41598-019-43711-8

    Article  ADS  Google Scholar 

  3. Kotz, K.T., Dubay, R., Berlin, D., and Fiering, J., Cytotherapy, 2017, vol. 19, no. 5, p. S20.

    Article  Google Scholar 

  4. Vakarelski, I.U., Li, E.Q., Abdel-Fattah, A.I., and Thoroddsen, S.T., Colloids Surf., A, 2016, vol. 506, p. 138. https://doi.org/10.1016/j.colsurfa.2016.06.013

    Article  Google Scholar 

  5. Dow, P., Kotz, K., Gruszka, S., Holder, J., and Fiering, J., Lab Chip, 2018, vol. 18, no. 6, p. 923. https://doi.org/10.1039/c7lc01180f

    Article  Google Scholar 

  6. Karlsen, J.T., Augustsson, P., and Bruus, H., Phys. Rev. Lett., 2016, vol. 117, no. 11, article no. 114504. https://doi.org/10.1103/PhysRevLett.117.114504

    Article  ADS  Google Scholar 

  7. Plouffe, B.D., Murthy, S.K., and Lewis, L.H., Rep. Prog. Phys., 2015, vol. 78, no. 1, article no. 016601. https://doi.org/10.1088/0034-4885/78/1/016601

    Article  ADS  Google Scholar 

  8. Ding, X.Y., Li, P., Lin, S.C.S., Stratton, Z.S., Nama, N., Guo, F., Slotcavage, D., Mao, X.L., Shi, J.J., Costanzo, F., and Huang, T.J., Lab Chip, 2013, vol. 13, no. 18, article no. 3626. https://doi.org/10.1039/c3lc50361e

    Article  Google Scholar 

  9. Li, P., Mao, Z.M., Peng, Z.L., Zhou, L.L., Chen, Y.C., Huang, P.H., Truica, C.I., Drabick, J.J., El-Deiry, W.S., Dao, M., Suresh, S., and Huang, T.J., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 16, p. 4970. https://doi.org/10.1073/pnas.1504484112

    Article  ADS  Google Scholar 

  10. Wu, M.X., Ozcelik, A., Rufo, J., Wang, Z.Y., Fang, R., and Huang, T.J., Microsyst. Nanoeng., 2019, vol. 5, article no. 32. https://doi.org/10.1038/s41378-019-0064-3

    Article  ADS  Google Scholar 

  11. Chen, Y.C., Wu, M.X., Ren, L.Q., Liu, J.Y., Whitley, P.H., Wang, L., and Huang, T.J., Lab Chip, 2016, vol. 16, no. 18, p. 3466. https://doi.org/10.1039/c6lc00682e

    Article  Google Scholar 

  12. Antfolk, M., Magnusson, C., Augustsson, P., Lija, H., and Laurell, T., Anal. Chem., 2015, vol. 87, no. 18, p. 9322. https://doi.org/10.1021/acs.analchem.5b02023

    Article  Google Scholar 

  13. Adams, J.D., Ebbesen, C.L., Barnkob, R., Yang, A.H.J., Soh, H.T., and Bruus, H., J. Micromech. Microeng., 2012, vol. 22, no. 7, article no. 075017. https://doi.org/10.1088/0960-1317/22/7/075017

    Article  ADS  Google Scholar 

  14. Ding, X.Y., Peng, Z.L., Lin, S.C.S., Geri, M., Li, S.X., Li, P., Chen, Y.C., Dao, M., Suresh, S., and Huang, T.J., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 36, p. 12992. https://doi.org/10.1073/pnas.1413325111

    Article  ADS  Google Scholar 

  15. Jakobsson, O., Antfolk, M., and Laurell, T., Anal. Chem., 2014, vol. 86, no. 12, p. 6111. https://doi.org/10.1021/ac5012602

    Article  Google Scholar 

  16. Laurell, T., Petersson, F., and Nilsson, A., Chem. Soc. Rev., 2007, vol. 36, no. 3, p. 492. https://doi.org/10.1039/b601326k

    Article  Google Scholar 

  17. Wang, Y.X., Ding, J.X., and Hua, C.H., Proc. 2009 IEEE Int. Ultrasonics Symposium, Roma, 2009, p. 2529.

  18. Benes, E., Groschl, M., and Nowotny, H., Proc. 2001 IEEE Int. Ultrasonics Symposium, Atlanta, GA, 2001, p. 649.

  19. Cheeke, J.D. and Zagzebski, J., Am. J. Phys., 2004, vol. 72, no. 5, p. 719. https://doi.org/10.1119/1.1645288

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the National Natural Science Foundation of China for financial support under grant no. 50675031 and the 2019 school-level scientific research project of Chengdu University of Technology 2019ZR014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenhui Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, C., Ding, J. High-throughput Double-mode Ultrasonic Micro-separator Based on 2D Normal Mode. Instrum Exp Tech 64, 496–502 (2021). https://doi.org/10.1134/S0020441221030179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221030179

Navigation